四川盆地侏罗系东月庙段富有机质湖相页岩控制因素

IF 1.2 4区 地球科学 Q3 GEOCHEMISTRY & GEOPHYSICS
Geofluids Pub Date : 2023-10-11 DOI:10.1155/2023/3380389
Yadong Zhou, Chan Jiang, Dongfeng Hu, Zhihong Wei, Xiangfeng Wei, Daojun Wang, Jingyu Hao, Yuqiang Jiang, Yifan Gu
{"title":"四川盆地侏罗系东月庙段富有机质湖相页岩控制因素","authors":"Yadong Zhou, Chan Jiang, Dongfeng Hu, Zhihong Wei, Xiangfeng Wei, Daojun Wang, Jingyu Hao, Yuqiang Jiang, Yifan Gu","doi":"10.1155/2023/3380389","DOIUrl":null,"url":null,"abstract":"Organic-rich continental shale, widespread in the Sichuan Basin during the deposition of the Jurassic Dongyuemiao Member (J1d), is considered the next shale hydrocarbon exploration target in southern China. To identify a shale gas sweetspot and reduce exploration risk, it is of great significance to determine the organic matter (OM) enrichment mechanism of J1d shale. In this study, based on sedimentological characteristics and organic matter content, high-resolution major and trace elements were systematically analyzed to demonstrate terrigenous influx, paleoredox, paleosalinity, paleoproductivity, and paleoclimate. The 1st section interval of the J1d 1st submember is dominated by shallow lake subfacies, while the other intervals have the characteristic of semideep to deep lake subfacies. The 1st submember interval of J1d lacustrine shale is characterized by the warmest-humid paleoclimate, strongest weathering degree, highest terrigenous input, moderate paleoproductivity, and paleoredox condition. Within the Dongyuemiao 1st submember, the 4th section interval has the highest paleoproductivity and the most oxygen-deficient condition in bottom water. During the deposition period of the 2nd submember, the sedimentary environment turned to a cold-dry paleoclimate, weak weathering degree, low terrigenous input, low paleosalinity, and high paleoproductivity. Under the background of semideep and deep lake, the terrigenous OM input plays the most critical role in controlling OM enrichment. Moreover, the high primary productivity of lake surface water and the suboxic condition of lake bottom water contribute to the formation of relatively higher TOC lacustrine shale interval in the 4th section of 1st submember.","PeriodicalId":12512,"journal":{"name":"Geofluids","volume":"1 1","pages":"0"},"PeriodicalIF":1.2000,"publicationDate":"2023-10-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Controlling Factors of Organic-Rich Lacustrine Shale in the Jurassic Dongyuemiao Member of Sichuan Basin, SW China\",\"authors\":\"Yadong Zhou, Chan Jiang, Dongfeng Hu, Zhihong Wei, Xiangfeng Wei, Daojun Wang, Jingyu Hao, Yuqiang Jiang, Yifan Gu\",\"doi\":\"10.1155/2023/3380389\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Organic-rich continental shale, widespread in the Sichuan Basin during the deposition of the Jurassic Dongyuemiao Member (J1d), is considered the next shale hydrocarbon exploration target in southern China. To identify a shale gas sweetspot and reduce exploration risk, it is of great significance to determine the organic matter (OM) enrichment mechanism of J1d shale. In this study, based on sedimentological characteristics and organic matter content, high-resolution major and trace elements were systematically analyzed to demonstrate terrigenous influx, paleoredox, paleosalinity, paleoproductivity, and paleoclimate. The 1st section interval of the J1d 1st submember is dominated by shallow lake subfacies, while the other intervals have the characteristic of semideep to deep lake subfacies. The 1st submember interval of J1d lacustrine shale is characterized by the warmest-humid paleoclimate, strongest weathering degree, highest terrigenous input, moderate paleoproductivity, and paleoredox condition. Within the Dongyuemiao 1st submember, the 4th section interval has the highest paleoproductivity and the most oxygen-deficient condition in bottom water. During the deposition period of the 2nd submember, the sedimentary environment turned to a cold-dry paleoclimate, weak weathering degree, low terrigenous input, low paleosalinity, and high paleoproductivity. Under the background of semideep and deep lake, the terrigenous OM input plays the most critical role in controlling OM enrichment. Moreover, the high primary productivity of lake surface water and the suboxic condition of lake bottom water contribute to the formation of relatively higher TOC lacustrine shale interval in the 4th section of 1st submember.\",\"PeriodicalId\":12512,\"journal\":{\"name\":\"Geofluids\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":1.2000,\"publicationDate\":\"2023-10-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Geofluids\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1155/2023/3380389\",\"RegionNum\":4,\"RegionCategory\":\"地球科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"GEOCHEMISTRY & GEOPHYSICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Geofluids","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1155/2023/3380389","RegionNum":4,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"GEOCHEMISTRY & GEOPHYSICS","Score":null,"Total":0}
引用次数: 0

摘要

富有机质陆相页岩广泛分布于四川盆地侏罗系东月庙段(J1d)沉积时期,被认为是华南地区下一个页岩油气勘探目标。确定J1d页岩有机质富集机制对识别页岩气甜点、降低勘探风险具有重要意义。本研究基于沉积学特征和有机质含量,系统分析了高分辨率主微量元素,揭示了陆源流入、古氧化还原、古盐度、古生产力和古气候。J1d一亚段一段段段以浅湖亚相为主,其余段段为半深至深湖亚相。J1d湖相页岩一亚段具有古气候最温暖湿润、风化程度最强、陆源输入最大、古生产力中等、古氧化还原条件良好的特征。东月庙一亚段中,4段古生产力最高,底水缺氧条件最严重。二亚段沉积时期,沉积环境转为冷干古气候,风化程度弱,陆源输入少,古盐度低,古生产力高。在半深湖背景下,陆源OM输入对OM富集起着最关键的控制作用。此外,湖表层水初级生产力高,湖底水缺氧,形成了一亚段四段相对较高TOC的湖相页岩层段。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Controlling Factors of Organic-Rich Lacustrine Shale in the Jurassic Dongyuemiao Member of Sichuan Basin, SW China
Organic-rich continental shale, widespread in the Sichuan Basin during the deposition of the Jurassic Dongyuemiao Member (J1d), is considered the next shale hydrocarbon exploration target in southern China. To identify a shale gas sweetspot and reduce exploration risk, it is of great significance to determine the organic matter (OM) enrichment mechanism of J1d shale. In this study, based on sedimentological characteristics and organic matter content, high-resolution major and trace elements were systematically analyzed to demonstrate terrigenous influx, paleoredox, paleosalinity, paleoproductivity, and paleoclimate. The 1st section interval of the J1d 1st submember is dominated by shallow lake subfacies, while the other intervals have the characteristic of semideep to deep lake subfacies. The 1st submember interval of J1d lacustrine shale is characterized by the warmest-humid paleoclimate, strongest weathering degree, highest terrigenous input, moderate paleoproductivity, and paleoredox condition. Within the Dongyuemiao 1st submember, the 4th section interval has the highest paleoproductivity and the most oxygen-deficient condition in bottom water. During the deposition period of the 2nd submember, the sedimentary environment turned to a cold-dry paleoclimate, weak weathering degree, low terrigenous input, low paleosalinity, and high paleoproductivity. Under the background of semideep and deep lake, the terrigenous OM input plays the most critical role in controlling OM enrichment. Moreover, the high primary productivity of lake surface water and the suboxic condition of lake bottom water contribute to the formation of relatively higher TOC lacustrine shale interval in the 4th section of 1st submember.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Geofluids
Geofluids 地学-地球化学与地球物理
CiteScore
2.80
自引率
17.60%
发文量
835
期刊介绍: Geofluids is a peer-reviewed, Open Access journal that provides a forum for original research and reviews relating to the role of fluids in mineralogical, chemical, and structural evolution of the Earth’s crust. Its explicit aim is to disseminate ideas across the range of sub-disciplines in which Geofluids research is carried out. To this end, authors are encouraged to stress the transdisciplinary relevance and international ramifications of their research. Authors are also encouraged to make their work as accessible as possible to readers from other sub-disciplines. Geofluids emphasizes chemical, microbial, and physical aspects of subsurface fluids throughout the Earth’s crust. Geofluids spans studies of groundwater, terrestrial or submarine geothermal fluids, basinal brines, petroleum, metamorphic waters or magmatic fluids.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信