Melanie Koinari, Nakei Bubun, David Wilson, Evodia Anetul, Lincoln Timinao, Petrina Johnson, Norelle L. Daly, Moses Laman, Tim Freeman, Stephan Karl
{"title":"x射线荧光光谱法分析长效杀虫蚊帐中杀虫剂及其与生物功效的相关性","authors":"Melanie Koinari, Nakei Bubun, David Wilson, Evodia Anetul, Lincoln Timinao, Petrina Johnson, Norelle L. Daly, Moses Laman, Tim Freeman, Stephan Karl","doi":"10.3389/fpara.2023.1258429","DOIUrl":null,"url":null,"abstract":"Background Long-lasting insecticidal nets (LLINs) are a key vector control tool used for the prevention of malaria. Active ingredient (AI) measurements in LLINs are essential for evaluating their quality and efficacy. The main aim of the present study was to determine the utility of X-ray fluorescence (XRF) spectroscopy as a suitable field-deployable tool for total AI quantification in LLINs. Methods New and unused LLIN samples containing deltamethrin (PermaNet® 2.0, n = 35) and alpha-cypermethrin (SafeNet®, n = 43) were obtained from batches delivered to Papua New Guinea (PNG) for mass distribution. Insecticides were extracted from the LLINs using a simple extraction technique and quantified using liquid chromatography mass spectrometry (LC-MS). The LC-MS results were correlated with XRF spectroscopy measurements on the same nets. Operators were blinded regarding the type of net. Bioefficacy of the LLIN samples was tested using WHO cone bioassays and test results were correlated with total AI content. Results The results indicate correlation between quantitative XRF and LC-MS. Interestingly, the total AI content was negatively correlated with bioefficacy in PermaNet® 2.0 (especially in recently manufactured nets). In contrast, AI content was positively correlated with bioefficacy in SafeNet®. These results indicate that the chemical content analysis in predelivery inspections does not always predict bioefficacy. Conclusion XRF is a promising field-deployable tool for quantification of both deltamethrin- and alpha-cypermethrin-coated LLINs. Because total AI content is not always a predictor of the efficacy of LLINs to kill mosquitoes, bioefficacy measurements should be included in predelivery inspections.","PeriodicalId":73098,"journal":{"name":"Frontiers in parasitology","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2023-10-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Analysis of insecticides in long-lasting insecticidal nets using X-ray fluorescence spectroscopy and correlation with bioefficacy\",\"authors\":\"Melanie Koinari, Nakei Bubun, David Wilson, Evodia Anetul, Lincoln Timinao, Petrina Johnson, Norelle L. Daly, Moses Laman, Tim Freeman, Stephan Karl\",\"doi\":\"10.3389/fpara.2023.1258429\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Background Long-lasting insecticidal nets (LLINs) are a key vector control tool used for the prevention of malaria. Active ingredient (AI) measurements in LLINs are essential for evaluating their quality and efficacy. The main aim of the present study was to determine the utility of X-ray fluorescence (XRF) spectroscopy as a suitable field-deployable tool for total AI quantification in LLINs. Methods New and unused LLIN samples containing deltamethrin (PermaNet® 2.0, n = 35) and alpha-cypermethrin (SafeNet®, n = 43) were obtained from batches delivered to Papua New Guinea (PNG) for mass distribution. Insecticides were extracted from the LLINs using a simple extraction technique and quantified using liquid chromatography mass spectrometry (LC-MS). The LC-MS results were correlated with XRF spectroscopy measurements on the same nets. Operators were blinded regarding the type of net. Bioefficacy of the LLIN samples was tested using WHO cone bioassays and test results were correlated with total AI content. Results The results indicate correlation between quantitative XRF and LC-MS. Interestingly, the total AI content was negatively correlated with bioefficacy in PermaNet® 2.0 (especially in recently manufactured nets). In contrast, AI content was positively correlated with bioefficacy in SafeNet®. These results indicate that the chemical content analysis in predelivery inspections does not always predict bioefficacy. Conclusion XRF is a promising field-deployable tool for quantification of both deltamethrin- and alpha-cypermethrin-coated LLINs. Because total AI content is not always a predictor of the efficacy of LLINs to kill mosquitoes, bioefficacy measurements should be included in predelivery inspections.\",\"PeriodicalId\":73098,\"journal\":{\"name\":\"Frontiers in parasitology\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-10-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Frontiers in parasitology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.3389/fpara.2023.1258429\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Frontiers in parasitology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3389/fpara.2023.1258429","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Analysis of insecticides in long-lasting insecticidal nets using X-ray fluorescence spectroscopy and correlation with bioefficacy
Background Long-lasting insecticidal nets (LLINs) are a key vector control tool used for the prevention of malaria. Active ingredient (AI) measurements in LLINs are essential for evaluating their quality and efficacy. The main aim of the present study was to determine the utility of X-ray fluorescence (XRF) spectroscopy as a suitable field-deployable tool for total AI quantification in LLINs. Methods New and unused LLIN samples containing deltamethrin (PermaNet® 2.0, n = 35) and alpha-cypermethrin (SafeNet®, n = 43) were obtained from batches delivered to Papua New Guinea (PNG) for mass distribution. Insecticides were extracted from the LLINs using a simple extraction technique and quantified using liquid chromatography mass spectrometry (LC-MS). The LC-MS results were correlated with XRF spectroscopy measurements on the same nets. Operators were blinded regarding the type of net. Bioefficacy of the LLIN samples was tested using WHO cone bioassays and test results were correlated with total AI content. Results The results indicate correlation between quantitative XRF and LC-MS. Interestingly, the total AI content was negatively correlated with bioefficacy in PermaNet® 2.0 (especially in recently manufactured nets). In contrast, AI content was positively correlated with bioefficacy in SafeNet®. These results indicate that the chemical content analysis in predelivery inspections does not always predict bioefficacy. Conclusion XRF is a promising field-deployable tool for quantification of both deltamethrin- and alpha-cypermethrin-coated LLINs. Because total AI content is not always a predictor of the efficacy of LLINs to kill mosquitoes, bioefficacy measurements should be included in predelivery inspections.