{"title":"推特上的社交机器人和人类组成的生态系统中的新兴地方结构","authors":"Abdullah Alrhmoun, János Kertész","doi":"10.1140/epjds/s13688-023-00406-5","DOIUrl":null,"url":null,"abstract":"Abstract Bots in online social networks can be used for good or bad but their presence is unavoidable and will increase in the future. To investigate how the interaction networks of bots and humans evolve, we created six social bots on Twitter with AI language models and let them carry out standard user operations. Three different strategies were implemented for the bots: a trend-targeting strategy (TTS), a keywords-targeting strategy (KTS) and a user-targeting strategy (UTS). We examined the interaction patterns such as targeting users, spreading messages, propagating relationships, and engagement. We focused on the emergent local structures or motifs and found that the strategies of the social bots had a significant impact on them. Motifs resulting from interactions with bots following TTS or KTS are simple and show significant overlap, while those resulting from interactions with UTS-governed bots lead to more complex motifs. These findings provide insights into human-bot interaction patterns in online social networks, and can be used to develop more effective bots for beneficial tasks and to combat malicious actors.","PeriodicalId":11887,"journal":{"name":"EPJ Data Science","volume":"58 1","pages":"0"},"PeriodicalIF":3.0000,"publicationDate":"2023-09-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Emergent local structures in an ecosystem of social bots and humans on Twitter\",\"authors\":\"Abdullah Alrhmoun, János Kertész\",\"doi\":\"10.1140/epjds/s13688-023-00406-5\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract Bots in online social networks can be used for good or bad but their presence is unavoidable and will increase in the future. To investigate how the interaction networks of bots and humans evolve, we created six social bots on Twitter with AI language models and let them carry out standard user operations. Three different strategies were implemented for the bots: a trend-targeting strategy (TTS), a keywords-targeting strategy (KTS) and a user-targeting strategy (UTS). We examined the interaction patterns such as targeting users, spreading messages, propagating relationships, and engagement. We focused on the emergent local structures or motifs and found that the strategies of the social bots had a significant impact on them. Motifs resulting from interactions with bots following TTS or KTS are simple and show significant overlap, while those resulting from interactions with UTS-governed bots lead to more complex motifs. These findings provide insights into human-bot interaction patterns in online social networks, and can be used to develop more effective bots for beneficial tasks and to combat malicious actors.\",\"PeriodicalId\":11887,\"journal\":{\"name\":\"EPJ Data Science\",\"volume\":\"58 1\",\"pages\":\"0\"},\"PeriodicalIF\":3.0000,\"publicationDate\":\"2023-09-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"EPJ Data Science\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1140/epjds/s13688-023-00406-5\",\"RegionNum\":2,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS, INTERDISCIPLINARY APPLICATIONS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"EPJ Data Science","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1140/epjds/s13688-023-00406-5","RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
Emergent local structures in an ecosystem of social bots and humans on Twitter
Abstract Bots in online social networks can be used for good or bad but their presence is unavoidable and will increase in the future. To investigate how the interaction networks of bots and humans evolve, we created six social bots on Twitter with AI language models and let them carry out standard user operations. Three different strategies were implemented for the bots: a trend-targeting strategy (TTS), a keywords-targeting strategy (KTS) and a user-targeting strategy (UTS). We examined the interaction patterns such as targeting users, spreading messages, propagating relationships, and engagement. We focused on the emergent local structures or motifs and found that the strategies of the social bots had a significant impact on them. Motifs resulting from interactions with bots following TTS or KTS are simple and show significant overlap, while those resulting from interactions with UTS-governed bots lead to more complex motifs. These findings provide insights into human-bot interaction patterns in online social networks, and can be used to develop more effective bots for beneficial tasks and to combat malicious actors.
期刊介绍:
EPJ Data Science covers a broad range of research areas and applications and particularly encourages contributions from techno-socio-economic systems, where it comprises those research lines that now regard the digital “tracks” of human beings as first-order objects for scientific investigation. Topics include, but are not limited to, human behavior, social interaction (including animal societies), economic and financial systems, management and business networks, socio-technical infrastructure, health and environmental systems, the science of science, as well as general risk and crisis scenario forecasting up to and including policy advice.