原有结构与断裂断层之间的相互作用:对南海北部海盆几何学的影响

IF 2.8 2区 地球科学 Q2 GEOSCIENCES, MULTIDISCIPLINARY
Basin Research Pub Date : 2023-09-22 DOI:10.1111/bre.12822
Wei Guan, Lei Huang, Chiyang Liu, Guangrong Peng, Han Li, Chao Liang, Lili Zhang, Hongbo Li, Zhe Wu, Xin Li, Ruining Hu
{"title":"原有结构与断裂断层之间的相互作用:对南海北部海盆几何学的影响","authors":"Wei Guan,&nbsp;Lei Huang,&nbsp;Chiyang Liu,&nbsp;Guangrong Peng,&nbsp;Han Li,&nbsp;Chao Liang,&nbsp;Lili Zhang,&nbsp;Hongbo Li,&nbsp;Zhe Wu,&nbsp;Xin Li,&nbsp;Ruining Hu","doi":"10.1111/bre.12822","DOIUrl":null,"url":null,"abstract":"<p>The northern South China Sea (SCS) margin evolved from the Mesozoic convergent to Cenozoic divergent continental margin, and thus, it developed on a heterogeneous crystalline basement with inherited Mesozoic structures. Pre-existing structures and their interactions with rift faults have historically not been described or interpreted in the intensely stretched Baiyun sub-basin. Large-scale 3D seismic reflection data allow us to identify four types of Mesozoic tectonic fabrics within the basement and explain their genesis: (1) Thin, isolated and north-dipping seismic reflections 1, interpreted as thrust faults representing orogenic processes. Tilted thick seismic reflections 2 are formed by reactivation of seismic reflections 1 during post-orogenic extension, which are all related to the NW-ward subduction of the palaeo-Pacific plate. (2) Thin, isolated and shallowly dipping seismic reflections 3 and low-amplitude, semi-transparent and chaotic seismic reflections 4 represent the low-angle thrust system and the associated nappe units, which are related to the shift from NW- to NNW-ward subduction of the paleo-Pacific plate. Subsequently, we investigate the structural interaction between Mesozoic intra-basement and Cenozoic rift structures. Syn-rift, post-rift and long-term faults are developed in Cenozoic strata, and quantitative statistical and qualitative analyses revealed two main types of structural interactions between them and underlying intra-basement structures: (1) Rift faults develop with inheritance of intra-basement structures, including fully and partially inherited faults. (2) Rift faults modify intra-basement structures, although they are controlled by intra-basement structures at an earlier stage. Finally, our results reveal the control of pre-existing structures on the geometry of the Baiyun sub-basin, especially the selective reactivation of NE-trending shear zones (SR2), which are influenced by the regional stress field and the width and dip of the shear zones.</p>","PeriodicalId":8712,"journal":{"name":"Basin Research","volume":"36 1","pages":""},"PeriodicalIF":2.8000,"publicationDate":"2023-09-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Interactions between pre-existing structures and rift faults: Implications for basin geometry in the northern South China Sea\",\"authors\":\"Wei Guan,&nbsp;Lei Huang,&nbsp;Chiyang Liu,&nbsp;Guangrong Peng,&nbsp;Han Li,&nbsp;Chao Liang,&nbsp;Lili Zhang,&nbsp;Hongbo Li,&nbsp;Zhe Wu,&nbsp;Xin Li,&nbsp;Ruining Hu\",\"doi\":\"10.1111/bre.12822\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>The northern South China Sea (SCS) margin evolved from the Mesozoic convergent to Cenozoic divergent continental margin, and thus, it developed on a heterogeneous crystalline basement with inherited Mesozoic structures. Pre-existing structures and their interactions with rift faults have historically not been described or interpreted in the intensely stretched Baiyun sub-basin. Large-scale 3D seismic reflection data allow us to identify four types of Mesozoic tectonic fabrics within the basement and explain their genesis: (1) Thin, isolated and north-dipping seismic reflections 1, interpreted as thrust faults representing orogenic processes. Tilted thick seismic reflections 2 are formed by reactivation of seismic reflections 1 during post-orogenic extension, which are all related to the NW-ward subduction of the palaeo-Pacific plate. (2) Thin, isolated and shallowly dipping seismic reflections 3 and low-amplitude, semi-transparent and chaotic seismic reflections 4 represent the low-angle thrust system and the associated nappe units, which are related to the shift from NW- to NNW-ward subduction of the paleo-Pacific plate. Subsequently, we investigate the structural interaction between Mesozoic intra-basement and Cenozoic rift structures. Syn-rift, post-rift and long-term faults are developed in Cenozoic strata, and quantitative statistical and qualitative analyses revealed two main types of structural interactions between them and underlying intra-basement structures: (1) Rift faults develop with inheritance of intra-basement structures, including fully and partially inherited faults. (2) Rift faults modify intra-basement structures, although they are controlled by intra-basement structures at an earlier stage. Finally, our results reveal the control of pre-existing structures on the geometry of the Baiyun sub-basin, especially the selective reactivation of NE-trending shear zones (SR2), which are influenced by the regional stress field and the width and dip of the shear zones.</p>\",\"PeriodicalId\":8712,\"journal\":{\"name\":\"Basin Research\",\"volume\":\"36 1\",\"pages\":\"\"},\"PeriodicalIF\":2.8000,\"publicationDate\":\"2023-09-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Basin Research\",\"FirstCategoryId\":\"89\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1111/bre.12822\",\"RegionNum\":2,\"RegionCategory\":\"地球科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"GEOSCIENCES, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Basin Research","FirstCategoryId":"89","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1111/bre.12822","RegionNum":2,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"GEOSCIENCES, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

南海北部大陆边缘由中生代的汇聚型大陆边缘演化为新生代的发散型大陆边缘,因此,南海北部大陆边缘发育在一个继承了中生代构造的异质结晶基底上。对于白云分盆地的强烈拉伸,历史上并没有描述或解释其原有构造及其与断裂断层的相互作用。通过大比例尺三维地震反射数据,我们确定了基底中生代构造的四种类型,并解释了其成因:(1) 薄、孤立和北倾地震反射 1,解释为代表造山过程的推断断层。倾斜的厚地震反射 2 由地震反射 1 在造山运动后的延伸过程中重新激活形成,均与古太平洋板块向西北俯冲有关。(2) 稀疏、孤立和浅倾的地震反射 3 和低振幅、半透明和混乱的地震反射 4 代表低角度推力系统和相关的岩层单元,这与古太平洋板块从西北向俯冲转变为西北向俯冲有关。随后,我们研究了中生代基底内构造与新生代断裂构造之间的相互作用。新生代地层中发育了同步断裂、后断裂和长期断层,定量统计和定性分析揭示了它们与基底内构造之间的两大类构造相互作用:(1) 裂谷断层的发育与基底内构造的继承有关,包括完全继承断层和部分继承断层。(2) 裂谷断层改变基底内部结构,尽管它们在早期阶段受到基底内部结构的控制。最后,我们的研究结果揭示了原有构造对白云次盆地几何形态的控制,尤其是东北向剪切带(SR2)的选择性重新激活,这受到区域应力场以及剪切带宽度和倾角的影响。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Interactions between pre-existing structures and rift faults: Implications for basin geometry in the northern South China Sea

Interactions between pre-existing structures and rift faults: Implications for basin geometry in the northern South China Sea

The northern South China Sea (SCS) margin evolved from the Mesozoic convergent to Cenozoic divergent continental margin, and thus, it developed on a heterogeneous crystalline basement with inherited Mesozoic structures. Pre-existing structures and their interactions with rift faults have historically not been described or interpreted in the intensely stretched Baiyun sub-basin. Large-scale 3D seismic reflection data allow us to identify four types of Mesozoic tectonic fabrics within the basement and explain their genesis: (1) Thin, isolated and north-dipping seismic reflections 1, interpreted as thrust faults representing orogenic processes. Tilted thick seismic reflections 2 are formed by reactivation of seismic reflections 1 during post-orogenic extension, which are all related to the NW-ward subduction of the palaeo-Pacific plate. (2) Thin, isolated and shallowly dipping seismic reflections 3 and low-amplitude, semi-transparent and chaotic seismic reflections 4 represent the low-angle thrust system and the associated nappe units, which are related to the shift from NW- to NNW-ward subduction of the paleo-Pacific plate. Subsequently, we investigate the structural interaction between Mesozoic intra-basement and Cenozoic rift structures. Syn-rift, post-rift and long-term faults are developed in Cenozoic strata, and quantitative statistical and qualitative analyses revealed two main types of structural interactions between them and underlying intra-basement structures: (1) Rift faults develop with inheritance of intra-basement structures, including fully and partially inherited faults. (2) Rift faults modify intra-basement structures, although they are controlled by intra-basement structures at an earlier stage. Finally, our results reveal the control of pre-existing structures on the geometry of the Baiyun sub-basin, especially the selective reactivation of NE-trending shear zones (SR2), which are influenced by the regional stress field and the width and dip of the shear zones.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Basin Research
Basin Research 地学-地球科学综合
CiteScore
7.00
自引率
9.40%
发文量
88
审稿时长
>12 weeks
期刊介绍: Basin Research is an international journal which aims to publish original, high impact research papers on sedimentary basin systems. We view integrated, interdisciplinary research as being essential for the advancement of the subject area; therefore, we do not seek manuscripts focused purely on sedimentology, structural geology, or geophysics that have a natural home in specialist journals. Rather, we seek manuscripts that treat sedimentary basins as multi-component systems that require a multi-faceted approach to advance our understanding of their development. During deposition and subsidence we are concerned with large-scale geodynamic processes, heat flow, fluid flow, strain distribution, seismic and sequence stratigraphy, modelling, burial and inversion histories. In addition, we view the development of the source area, in terms of drainage networks, climate, erosion, denudation and sediment routing systems as vital to sedimentary basin systems. The underpinning requirement is that a contribution should be of interest to earth scientists of more than one discipline.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信