{"title":"人工智能锁模光纤激光器研究进展","authors":"Qiuying Ma, Haoyang Yu","doi":"10.1007/s41871-023-00216-3","DOIUrl":null,"url":null,"abstract":"Abstract Owing to their compactness, robustness, low cost, high stability, and diffraction-limited beam quality, mode-locked fiber lasers play an indispensable role in micro/nanomanufacturing, precision metrology, laser spectroscopy, LiDAR, biomedical imaging, optical communication, and soliton physics. Mode-locked fiber lasers are a highly complex nonlinear optical system, and understanding the underlying physical mechanisms or the flexible manipulation of ultrafast laser output is challenging. The traditional research paradigm often relies on known physical models, sophisticated numerical calculations, and exploratory experimental attempts. However, when dealing with several complex issues, these traditional approaches often face limitations and struggles in finding effective solutions. As an emerging data-driven analysis and processing technology, artificial intelligence (AI) has brought new insights into the development of mode-locked fiber lasers. This review highlights the areas where AI exhibits potential in accelerating the development of mode-locked fiber lasers, including nonlinear dynamics prediction, ultrashort pulse characterization, inverse design, and automatic control of mode-locked fiber lasers. Furthermore, the challenges and potential future development are discussed.","PeriodicalId":52345,"journal":{"name":"Nanomanufacturing and Metrology","volume":"21 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-09-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Artificial Intelligence-Enabled Mode-Locked Fiber Laser: A Review\",\"authors\":\"Qiuying Ma, Haoyang Yu\",\"doi\":\"10.1007/s41871-023-00216-3\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract Owing to their compactness, robustness, low cost, high stability, and diffraction-limited beam quality, mode-locked fiber lasers play an indispensable role in micro/nanomanufacturing, precision metrology, laser spectroscopy, LiDAR, biomedical imaging, optical communication, and soliton physics. Mode-locked fiber lasers are a highly complex nonlinear optical system, and understanding the underlying physical mechanisms or the flexible manipulation of ultrafast laser output is challenging. The traditional research paradigm often relies on known physical models, sophisticated numerical calculations, and exploratory experimental attempts. However, when dealing with several complex issues, these traditional approaches often face limitations and struggles in finding effective solutions. As an emerging data-driven analysis and processing technology, artificial intelligence (AI) has brought new insights into the development of mode-locked fiber lasers. This review highlights the areas where AI exhibits potential in accelerating the development of mode-locked fiber lasers, including nonlinear dynamics prediction, ultrashort pulse characterization, inverse design, and automatic control of mode-locked fiber lasers. Furthermore, the challenges and potential future development are discussed.\",\"PeriodicalId\":52345,\"journal\":{\"name\":\"Nanomanufacturing and Metrology\",\"volume\":\"21 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-09-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Nanomanufacturing and Metrology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1007/s41871-023-00216-3\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"Engineering\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nanomanufacturing and Metrology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1007/s41871-023-00216-3","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Engineering","Score":null,"Total":0}
Artificial Intelligence-Enabled Mode-Locked Fiber Laser: A Review
Abstract Owing to their compactness, robustness, low cost, high stability, and diffraction-limited beam quality, mode-locked fiber lasers play an indispensable role in micro/nanomanufacturing, precision metrology, laser spectroscopy, LiDAR, biomedical imaging, optical communication, and soliton physics. Mode-locked fiber lasers are a highly complex nonlinear optical system, and understanding the underlying physical mechanisms or the flexible manipulation of ultrafast laser output is challenging. The traditional research paradigm often relies on known physical models, sophisticated numerical calculations, and exploratory experimental attempts. However, when dealing with several complex issues, these traditional approaches often face limitations and struggles in finding effective solutions. As an emerging data-driven analysis and processing technology, artificial intelligence (AI) has brought new insights into the development of mode-locked fiber lasers. This review highlights the areas where AI exhibits potential in accelerating the development of mode-locked fiber lasers, including nonlinear dynamics prediction, ultrashort pulse characterization, inverse design, and automatic control of mode-locked fiber lasers. Furthermore, the challenges and potential future development are discussed.
期刊介绍:
Nanomanufacturing and Metrology is a peer-reviewed, international and interdisciplinary research journal and is the first journal over the world that provides a principal forum for nano-manufacturing and nano-metrology.Nanomanufacturing and Metrology publishes in the forms including original articles, cutting-edge communications, timely review papers, technical reports, and case studies. Special issues devoted to developments in important topics in nano-manufacturing and metrology will be published periodically.Nanomanufacturing and Metrology publishes articles that focus on, but are not limited to, the following areas:• Nano-manufacturing and metrology• Atomic manufacturing and metrology• Micro-manufacturing and metrology• Physics, chemistry, and materials in micro-manufacturing, nano-manufacturing, and atomic manufacturing• Tools and processes for micro-manufacturing, nano-manufacturing and atomic manufacturing