求助PDF
{"title":"具有大量收缩的双曲流形","authors":"Cayo Dória, Emanoel Freire, Plinio Murillo","doi":"10.1090/tran/9049","DOIUrl":null,"url":null,"abstract":"In this article, for any <inline-formula content-type=\"math/mathml\"> <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"n greater-than-or-equal-to 4\"> <mml:semantics> <mml:mrow> <mml:mi>n</mml:mi> <mml:mo>≥<!-- ≥ --></mml:mo> <mml:mn>4</mml:mn> </mml:mrow> <mml:annotation encoding=\"application/x-tex\">n\\geq 4</mml:annotation> </mml:semantics> </mml:math> </inline-formula> we construct a sequence of compact hyperbolic <inline-formula content-type=\"math/mathml\"> <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"n\"> <mml:semantics> <mml:mi>n</mml:mi> <mml:annotation encoding=\"application/x-tex\">n</mml:annotation> </mml:semantics> </mml:math> </inline-formula>-manifolds <inline-formula content-type=\"math/mathml\"> <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"left-brace upper M Subscript i Baseline right-brace\"> <mml:semantics> <mml:mrow> <mml:mo fence=\"false\" stretchy=\"false\">{</mml:mo> <mml:msub> <mml:mi>M</mml:mi> <mml:mi>i</mml:mi> </mml:msub> <mml:mo fence=\"false\" stretchy=\"false\">}</mml:mo> </mml:mrow> <mml:annotation encoding=\"application/x-tex\">\\{M_i\\}</mml:annotation> </mml:semantics> </mml:math> </inline-formula> with number of systoles at least as <inline-formula content-type=\"math/mathml\"> <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"normal v normal o normal l left-parenthesis upper M Subscript i Baseline right-parenthesis Superscript 1 plus StartFraction 1 Over 3 n left-parenthesis n plus 1 right-parenthesis EndFraction minus epsilon\"> <mml:semantics> <mml:mrow> <mml:mrow class=\"MJX-TeXAtom-ORD\"> <mml:mi mathvariant=\"normal\">v</mml:mi> <mml:mi mathvariant=\"normal\">o</mml:mi> <mml:mi mathvariant=\"normal\">l</mml:mi> </mml:mrow> <mml:mo stretchy=\"false\">(</mml:mo> <mml:msub> <mml:mi>M</mml:mi> <mml:mi>i</mml:mi> </mml:msub> <mml:msup> <mml:mo stretchy=\"false\">)</mml:mo> <mml:mrow class=\"MJX-TeXAtom-ORD\"> <mml:mn>1</mml:mn> <mml:mo>+</mml:mo> <mml:mfrac> <mml:mn>1</mml:mn> <mml:mrow> <mml:mn>3</mml:mn> <mml:mi>n</mml:mi> <mml:mo stretchy=\"false\">(</mml:mo> <mml:mi>n</mml:mi> <mml:mo>+</mml:mo> <mml:mn>1</mml:mn> <mml:mo stretchy=\"false\">)</mml:mo> </mml:mrow> </mml:mfrac> <mml:mo>−<!-- − --></mml:mo> <mml:mi>ϵ<!-- ϵ --></mml:mi> </mml:mrow> </mml:msup> </mml:mrow> <mml:annotation encoding=\"application/x-tex\">\\mathrm {vol}(M_i)^{1+\\frac {1}{3n(n+1)}-\\epsilon }</mml:annotation> </mml:semantics> </mml:math> </inline-formula> for any <inline-formula content-type=\"math/mathml\"> <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"epsilon greater-than 0\"> <mml:semantics> <mml:mrow> <mml:mi>ϵ<!-- ϵ --></mml:mi> <mml:mo>></mml:mo> <mml:mn>0</mml:mn> </mml:mrow> <mml:annotation encoding=\"application/x-tex\">\\epsilon >0</mml:annotation> </mml:semantics> </mml:math> </inline-formula>. In dimension 3, the bound is improved to <inline-formula content-type=\"math/mathml\"> <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"normal v normal o normal l left-parenthesis upper M Subscript i Baseline right-parenthesis Superscript four thirds minus epsilon\"> <mml:semantics> <mml:mrow> <mml:mrow class=\"MJX-TeXAtom-ORD\"> <mml:mi mathvariant=\"normal\">v</mml:mi> <mml:mi mathvariant=\"normal\">o</mml:mi> <mml:mi mathvariant=\"normal\">l</mml:mi> </mml:mrow> <mml:mo stretchy=\"false\">(</mml:mo> <mml:msub> <mml:mi>M</mml:mi> <mml:mi>i</mml:mi> </mml:msub> <mml:msup> <mml:mo stretchy=\"false\">)</mml:mo> <mml:mrow class=\"MJX-TeXAtom-ORD\"> <mml:mfrac> <mml:mn>4</mml:mn> <mml:mn>3</mml:mn> </mml:mfrac> <mml:mo>−<!-- − --></mml:mo> <mml:mi>ϵ<!-- ϵ --></mml:mi> </mml:mrow> </mml:msup> </mml:mrow> <mml:annotation encoding=\"application/x-tex\">\\mathrm {vol}(M_i)^{\\frac {4}{3}-\\epsilon }</mml:annotation> </mml:semantics> </mml:math> </inline-formula>. These results generalize previous work of Schmutz for <inline-formula content-type=\"math/mathml\"> <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"n equals 2\"> <mml:semantics> <mml:mrow> <mml:mi>n</mml:mi> <mml:mo>=</mml:mo> <mml:mn>2</mml:mn> </mml:mrow> <mml:annotation encoding=\"application/x-tex\">n=2</mml:annotation> </mml:semantics> </mml:math> </inline-formula>, and Dória-Murillo for <inline-formula content-type=\"math/mathml\"> <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"n equals 3\"> <mml:semantics> <mml:mrow> <mml:mi>n</mml:mi> <mml:mo>=</mml:mo> <mml:mn>3</mml:mn> </mml:mrow> <mml:annotation encoding=\"application/x-tex\">n=3</mml:annotation> </mml:semantics> </mml:math> </inline-formula> to higher dimensions.","PeriodicalId":23209,"journal":{"name":"Transactions of the American Mathematical Society","volume":null,"pages":null},"PeriodicalIF":1.2000,"publicationDate":"2023-10-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Hyperbolic manifolds with a large number of systoles\",\"authors\":\"Cayo Dória, Emanoel Freire, Plinio Murillo\",\"doi\":\"10.1090/tran/9049\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this article, for any <inline-formula content-type=\\\"math/mathml\\\"> <mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\" alttext=\\\"n greater-than-or-equal-to 4\\\"> <mml:semantics> <mml:mrow> <mml:mi>n</mml:mi> <mml:mo>≥<!-- ≥ --></mml:mo> <mml:mn>4</mml:mn> </mml:mrow> <mml:annotation encoding=\\\"application/x-tex\\\">n\\\\geq 4</mml:annotation> </mml:semantics> </mml:math> </inline-formula> we construct a sequence of compact hyperbolic <inline-formula content-type=\\\"math/mathml\\\"> <mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\" alttext=\\\"n\\\"> <mml:semantics> <mml:mi>n</mml:mi> <mml:annotation encoding=\\\"application/x-tex\\\">n</mml:annotation> </mml:semantics> </mml:math> </inline-formula>-manifolds <inline-formula content-type=\\\"math/mathml\\\"> <mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\" alttext=\\\"left-brace upper M Subscript i Baseline right-brace\\\"> <mml:semantics> <mml:mrow> <mml:mo fence=\\\"false\\\" stretchy=\\\"false\\\">{</mml:mo> <mml:msub> <mml:mi>M</mml:mi> <mml:mi>i</mml:mi> </mml:msub> <mml:mo fence=\\\"false\\\" stretchy=\\\"false\\\">}</mml:mo> </mml:mrow> <mml:annotation encoding=\\\"application/x-tex\\\">\\\\{M_i\\\\}</mml:annotation> </mml:semantics> </mml:math> </inline-formula> with number of systoles at least as <inline-formula content-type=\\\"math/mathml\\\"> <mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\" alttext=\\\"normal v normal o normal l left-parenthesis upper M Subscript i Baseline right-parenthesis Superscript 1 plus StartFraction 1 Over 3 n left-parenthesis n plus 1 right-parenthesis EndFraction minus epsilon\\\"> <mml:semantics> <mml:mrow> <mml:mrow class=\\\"MJX-TeXAtom-ORD\\\"> <mml:mi mathvariant=\\\"normal\\\">v</mml:mi> <mml:mi mathvariant=\\\"normal\\\">o</mml:mi> <mml:mi mathvariant=\\\"normal\\\">l</mml:mi> </mml:mrow> <mml:mo stretchy=\\\"false\\\">(</mml:mo> <mml:msub> <mml:mi>M</mml:mi> <mml:mi>i</mml:mi> </mml:msub> <mml:msup> <mml:mo stretchy=\\\"false\\\">)</mml:mo> <mml:mrow class=\\\"MJX-TeXAtom-ORD\\\"> <mml:mn>1</mml:mn> <mml:mo>+</mml:mo> <mml:mfrac> <mml:mn>1</mml:mn> <mml:mrow> <mml:mn>3</mml:mn> <mml:mi>n</mml:mi> <mml:mo stretchy=\\\"false\\\">(</mml:mo> <mml:mi>n</mml:mi> <mml:mo>+</mml:mo> <mml:mn>1</mml:mn> <mml:mo stretchy=\\\"false\\\">)</mml:mo> </mml:mrow> </mml:mfrac> <mml:mo>−<!-- − --></mml:mo> <mml:mi>ϵ<!-- ϵ --></mml:mi> </mml:mrow> </mml:msup> </mml:mrow> <mml:annotation encoding=\\\"application/x-tex\\\">\\\\mathrm {vol}(M_i)^{1+\\\\frac {1}{3n(n+1)}-\\\\epsilon }</mml:annotation> </mml:semantics> </mml:math> </inline-formula> for any <inline-formula content-type=\\\"math/mathml\\\"> <mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\" alttext=\\\"epsilon greater-than 0\\\"> <mml:semantics> <mml:mrow> <mml:mi>ϵ<!-- ϵ --></mml:mi> <mml:mo>></mml:mo> <mml:mn>0</mml:mn> </mml:mrow> <mml:annotation encoding=\\\"application/x-tex\\\">\\\\epsilon >0</mml:annotation> </mml:semantics> </mml:math> </inline-formula>. In dimension 3, the bound is improved to <inline-formula content-type=\\\"math/mathml\\\"> <mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\" alttext=\\\"normal v normal o normal l left-parenthesis upper M Subscript i Baseline right-parenthesis Superscript four thirds minus epsilon\\\"> <mml:semantics> <mml:mrow> <mml:mrow class=\\\"MJX-TeXAtom-ORD\\\"> <mml:mi mathvariant=\\\"normal\\\">v</mml:mi> <mml:mi mathvariant=\\\"normal\\\">o</mml:mi> <mml:mi mathvariant=\\\"normal\\\">l</mml:mi> </mml:mrow> <mml:mo stretchy=\\\"false\\\">(</mml:mo> <mml:msub> <mml:mi>M</mml:mi> <mml:mi>i</mml:mi> </mml:msub> <mml:msup> <mml:mo stretchy=\\\"false\\\">)</mml:mo> <mml:mrow class=\\\"MJX-TeXAtom-ORD\\\"> <mml:mfrac> <mml:mn>4</mml:mn> <mml:mn>3</mml:mn> </mml:mfrac> <mml:mo>−<!-- − --></mml:mo> <mml:mi>ϵ<!-- ϵ --></mml:mi> </mml:mrow> </mml:msup> </mml:mrow> <mml:annotation encoding=\\\"application/x-tex\\\">\\\\mathrm {vol}(M_i)^{\\\\frac {4}{3}-\\\\epsilon }</mml:annotation> </mml:semantics> </mml:math> </inline-formula>. These results generalize previous work of Schmutz for <inline-formula content-type=\\\"math/mathml\\\"> <mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\" alttext=\\\"n equals 2\\\"> <mml:semantics> <mml:mrow> <mml:mi>n</mml:mi> <mml:mo>=</mml:mo> <mml:mn>2</mml:mn> </mml:mrow> <mml:annotation encoding=\\\"application/x-tex\\\">n=2</mml:annotation> </mml:semantics> </mml:math> </inline-formula>, and Dória-Murillo for <inline-formula content-type=\\\"math/mathml\\\"> <mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\" alttext=\\\"n equals 3\\\"> <mml:semantics> <mml:mrow> <mml:mi>n</mml:mi> <mml:mo>=</mml:mo> <mml:mn>3</mml:mn> </mml:mrow> <mml:annotation encoding=\\\"application/x-tex\\\">n=3</mml:annotation> </mml:semantics> </mml:math> </inline-formula> to higher dimensions.\",\"PeriodicalId\":23209,\"journal\":{\"name\":\"Transactions of the American Mathematical Society\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.2000,\"publicationDate\":\"2023-10-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Transactions of the American Mathematical Society\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1090/tran/9049\",\"RegionNum\":2,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Transactions of the American Mathematical Society","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1090/tran/9049","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 1
引用
批量引用