{"title":"在Sierpiński地毯上建造𝑝-energy和相关的能源措施","authors":"Ryosuke Shimizu","doi":"10.1090/tran/9036","DOIUrl":null,"url":null,"abstract":"We establish the existence of a scaling limit <inline-formula content-type=\"math/mathml\"> <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"script upper E Subscript p\"> <mml:semantics> <mml:msub> <mml:mrow class=\"MJX-TeXAtom-ORD\"> <mml:mi class=\"MJX-tex-caligraphic\" mathvariant=\"script\">E</mml:mi> </mml:mrow> <mml:mi>p</mml:mi> </mml:msub> <mml:annotation encoding=\"application/x-tex\">\\mathcal {E}_p</mml:annotation> </mml:semantics> </mml:math> </inline-formula> of discrete <inline-formula content-type=\"math/mathml\"> <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"p\"> <mml:semantics> <mml:mi>p</mml:mi> <mml:annotation encoding=\"application/x-tex\">p</mml:annotation> </mml:semantics> </mml:math> </inline-formula>-energies on the graphs approximating a generalized Sierpiński carpet for <inline-formula content-type=\"math/mathml\"> <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"p greater-than d Subscript normal upper A normal upper R normal upper C\"> <mml:semantics> <mml:mrow> <mml:mi>p</mml:mi> <mml:mo>></mml:mo> <mml:msub> <mml:mi>d</mml:mi> <mml:mrow class=\"MJX-TeXAtom-ORD\"> <mml:mrow class=\"MJX-TeXAtom-ORD\"> <mml:mi mathvariant=\"normal\">A</mml:mi> <mml:mi mathvariant=\"normal\">R</mml:mi> <mml:mi mathvariant=\"normal\">C</mml:mi> </mml:mrow> </mml:mrow> </mml:msub> </mml:mrow> <mml:annotation encoding=\"application/x-tex\">p > d_{\\mathrm {ARC}}</mml:annotation> </mml:semantics> </mml:math> </inline-formula>, where <inline-formula content-type=\"math/mathml\"> <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"d Subscript normal upper A normal upper R normal upper C\"> <mml:semantics> <mml:msub> <mml:mi>d</mml:mi> <mml:mrow class=\"MJX-TeXAtom-ORD\"> <mml:mrow class=\"MJX-TeXAtom-ORD\"> <mml:mi mathvariant=\"normal\">A</mml:mi> <mml:mi mathvariant=\"normal\">R</mml:mi> <mml:mi mathvariant=\"normal\">C</mml:mi> </mml:mrow> </mml:mrow> </mml:msub> <mml:annotation encoding=\"application/x-tex\">d_{\\mathrm {ARC}}</mml:annotation> </mml:semantics> </mml:math> </inline-formula> is the Ahlfors regular conformal dimension of the underlying generalized Sierpiński carpet. Furthermore, the function space <inline-formula content-type=\"math/mathml\"> <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"script upper F Subscript p\"> <mml:semantics> <mml:msub> <mml:mrow class=\"MJX-TeXAtom-ORD\"> <mml:mi class=\"MJX-tex-caligraphic\" mathvariant=\"script\">F</mml:mi> </mml:mrow> <mml:mrow class=\"MJX-TeXAtom-ORD\"> <mml:mi>p</mml:mi> </mml:mrow> </mml:msub> <mml:annotation encoding=\"application/x-tex\">\\mathcal {F}_{p}</mml:annotation> </mml:semantics> </mml:math> </inline-formula> defined as the collection of functions with finite <inline-formula content-type=\"math/mathml\"> <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"p\"> <mml:semantics> <mml:mi>p</mml:mi> <mml:annotation encoding=\"application/x-tex\">p</mml:annotation> </mml:semantics> </mml:math> </inline-formula>-energies is shown to be a reflexive and separable Banach space that is dense in the set of continuous functions with respect to the supremum norm. In particular, <inline-formula content-type=\"math/mathml\"> <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"left-parenthesis script upper E 2 comma script upper F 2 right-parenthesis\"> <mml:semantics> <mml:mrow> <mml:mo stretchy=\"false\">(</mml:mo> <mml:msub> <mml:mrow class=\"MJX-TeXAtom-ORD\"> <mml:mi class=\"MJX-tex-caligraphic\" mathvariant=\"script\">E</mml:mi> </mml:mrow> <mml:mn>2</mml:mn> </mml:msub> <mml:mo>,</mml:mo> <mml:msub> <mml:mrow class=\"MJX-TeXAtom-ORD\"> <mml:mi class=\"MJX-tex-caligraphic\" mathvariant=\"script\">F</mml:mi> </mml:mrow> <mml:mn>2</mml:mn> </mml:msub> <mml:mo stretchy=\"false\">)</mml:mo> </mml:mrow> <mml:annotation encoding=\"application/x-tex\">(\\mathcal {E}_2, \\mathcal {F}_2)</mml:annotation> </mml:semantics> </mml:math> </inline-formula> recovers the canonical regular Dirichlet form constructed by Barlow and Bass [Ann. Inst. H. Poincaré Probab. Statist. 25 (1989), pp. 225–257] or Kusuoka and Zhou [Probab. Theory Related Fields 93 (1992), pp. 169–196]. We also provide <inline-formula content-type=\"math/mathml\"> <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"script upper E Subscript p\"> <mml:semantics> <mml:msub> <mml:mrow class=\"MJX-TeXAtom-ORD\"> <mml:mi class=\"MJX-tex-caligraphic\" mathvariant=\"script\">E</mml:mi> </mml:mrow> <mml:mrow class=\"MJX-TeXAtom-ORD\"> <mml:mi>p</mml:mi> </mml:mrow> </mml:msub> <mml:annotation encoding=\"application/x-tex\">\\mathcal {E}_{p}</mml:annotation> </mml:semantics> </mml:math> </inline-formula>-energy measures associated with the constructed <inline-formula content-type=\"math/mathml\"> <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"p\"> <mml:semantics> <mml:mi>p</mml:mi> <mml:annotation encoding=\"application/x-tex\">p</mml:annotation> </mml:semantics> </mml:math> </inline-formula>-energy and investigate its basic properties like self-similarity and chain rule.","PeriodicalId":23209,"journal":{"name":"Transactions of the American Mathematical Society","volume":null,"pages":null},"PeriodicalIF":1.2000,"publicationDate":"2023-10-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Construction of 𝑝-energy and associated energy measures on Sierpiński carpets\",\"authors\":\"Ryosuke Shimizu\",\"doi\":\"10.1090/tran/9036\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We establish the existence of a scaling limit <inline-formula content-type=\\\"math/mathml\\\"> <mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\" alttext=\\\"script upper E Subscript p\\\"> <mml:semantics> <mml:msub> <mml:mrow class=\\\"MJX-TeXAtom-ORD\\\"> <mml:mi class=\\\"MJX-tex-caligraphic\\\" mathvariant=\\\"script\\\">E</mml:mi> </mml:mrow> <mml:mi>p</mml:mi> </mml:msub> <mml:annotation encoding=\\\"application/x-tex\\\">\\\\mathcal {E}_p</mml:annotation> </mml:semantics> </mml:math> </inline-formula> of discrete <inline-formula content-type=\\\"math/mathml\\\"> <mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\" alttext=\\\"p\\\"> <mml:semantics> <mml:mi>p</mml:mi> <mml:annotation encoding=\\\"application/x-tex\\\">p</mml:annotation> </mml:semantics> </mml:math> </inline-formula>-energies on the graphs approximating a generalized Sierpiński carpet for <inline-formula content-type=\\\"math/mathml\\\"> <mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\" alttext=\\\"p greater-than d Subscript normal upper A normal upper R normal upper C\\\"> <mml:semantics> <mml:mrow> <mml:mi>p</mml:mi> <mml:mo>></mml:mo> <mml:msub> <mml:mi>d</mml:mi> <mml:mrow class=\\\"MJX-TeXAtom-ORD\\\"> <mml:mrow class=\\\"MJX-TeXAtom-ORD\\\"> <mml:mi mathvariant=\\\"normal\\\">A</mml:mi> <mml:mi mathvariant=\\\"normal\\\">R</mml:mi> <mml:mi mathvariant=\\\"normal\\\">C</mml:mi> </mml:mrow> </mml:mrow> </mml:msub> </mml:mrow> <mml:annotation encoding=\\\"application/x-tex\\\">p > d_{\\\\mathrm {ARC}}</mml:annotation> </mml:semantics> </mml:math> </inline-formula>, where <inline-formula content-type=\\\"math/mathml\\\"> <mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\" alttext=\\\"d Subscript normal upper A normal upper R normal upper C\\\"> <mml:semantics> <mml:msub> <mml:mi>d</mml:mi> <mml:mrow class=\\\"MJX-TeXAtom-ORD\\\"> <mml:mrow class=\\\"MJX-TeXAtom-ORD\\\"> <mml:mi mathvariant=\\\"normal\\\">A</mml:mi> <mml:mi mathvariant=\\\"normal\\\">R</mml:mi> <mml:mi mathvariant=\\\"normal\\\">C</mml:mi> </mml:mrow> </mml:mrow> </mml:msub> <mml:annotation encoding=\\\"application/x-tex\\\">d_{\\\\mathrm {ARC}}</mml:annotation> </mml:semantics> </mml:math> </inline-formula> is the Ahlfors regular conformal dimension of the underlying generalized Sierpiński carpet. Furthermore, the function space <inline-formula content-type=\\\"math/mathml\\\"> <mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\" alttext=\\\"script upper F Subscript p\\\"> <mml:semantics> <mml:msub> <mml:mrow class=\\\"MJX-TeXAtom-ORD\\\"> <mml:mi class=\\\"MJX-tex-caligraphic\\\" mathvariant=\\\"script\\\">F</mml:mi> </mml:mrow> <mml:mrow class=\\\"MJX-TeXAtom-ORD\\\"> <mml:mi>p</mml:mi> </mml:mrow> </mml:msub> <mml:annotation encoding=\\\"application/x-tex\\\">\\\\mathcal {F}_{p}</mml:annotation> </mml:semantics> </mml:math> </inline-formula> defined as the collection of functions with finite <inline-formula content-type=\\\"math/mathml\\\"> <mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\" alttext=\\\"p\\\"> <mml:semantics> <mml:mi>p</mml:mi> <mml:annotation encoding=\\\"application/x-tex\\\">p</mml:annotation> </mml:semantics> </mml:math> </inline-formula>-energies is shown to be a reflexive and separable Banach space that is dense in the set of continuous functions with respect to the supremum norm. In particular, <inline-formula content-type=\\\"math/mathml\\\"> <mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\" alttext=\\\"left-parenthesis script upper E 2 comma script upper F 2 right-parenthesis\\\"> <mml:semantics> <mml:mrow> <mml:mo stretchy=\\\"false\\\">(</mml:mo> <mml:msub> <mml:mrow class=\\\"MJX-TeXAtom-ORD\\\"> <mml:mi class=\\\"MJX-tex-caligraphic\\\" mathvariant=\\\"script\\\">E</mml:mi> </mml:mrow> <mml:mn>2</mml:mn> </mml:msub> <mml:mo>,</mml:mo> <mml:msub> <mml:mrow class=\\\"MJX-TeXAtom-ORD\\\"> <mml:mi class=\\\"MJX-tex-caligraphic\\\" mathvariant=\\\"script\\\">F</mml:mi> </mml:mrow> <mml:mn>2</mml:mn> </mml:msub> <mml:mo stretchy=\\\"false\\\">)</mml:mo> </mml:mrow> <mml:annotation encoding=\\\"application/x-tex\\\">(\\\\mathcal {E}_2, \\\\mathcal {F}_2)</mml:annotation> </mml:semantics> </mml:math> </inline-formula> recovers the canonical regular Dirichlet form constructed by Barlow and Bass [Ann. Inst. H. Poincaré Probab. Statist. 25 (1989), pp. 225–257] or Kusuoka and Zhou [Probab. Theory Related Fields 93 (1992), pp. 169–196]. We also provide <inline-formula content-type=\\\"math/mathml\\\"> <mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\" alttext=\\\"script upper E Subscript p\\\"> <mml:semantics> <mml:msub> <mml:mrow class=\\\"MJX-TeXAtom-ORD\\\"> <mml:mi class=\\\"MJX-tex-caligraphic\\\" mathvariant=\\\"script\\\">E</mml:mi> </mml:mrow> <mml:mrow class=\\\"MJX-TeXAtom-ORD\\\"> <mml:mi>p</mml:mi> </mml:mrow> </mml:msub> <mml:annotation encoding=\\\"application/x-tex\\\">\\\\mathcal {E}_{p}</mml:annotation> </mml:semantics> </mml:math> </inline-formula>-energy measures associated with the constructed <inline-formula content-type=\\\"math/mathml\\\"> <mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\" alttext=\\\"p\\\"> <mml:semantics> <mml:mi>p</mml:mi> <mml:annotation encoding=\\\"application/x-tex\\\">p</mml:annotation> </mml:semantics> </mml:math> </inline-formula>-energy and investigate its basic properties like self-similarity and chain rule.\",\"PeriodicalId\":23209,\"journal\":{\"name\":\"Transactions of the American Mathematical Society\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.2000,\"publicationDate\":\"2023-10-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Transactions of the American Mathematical Society\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1090/tran/9036\",\"RegionNum\":2,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Transactions of the American Mathematical Society","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1090/tran/9036","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0
摘要
在近似p >的广义Sierpiński地毯的图上,我们建立了离散pp -能量的标度极限E p \数学{E}_p的存在性;d A R p;d_{\ mathm {ARC}},其中d_{\ mathm {ARC}}是底层广义Sierpiński地毯的Ahlfors正则共形维数。进一步,将函数空间F p \数学{F}_{p}定义为具有有限p p -能量的函数集合,证明它是一个自反的可分离的巴拿赫空间,它在连续函数集合中相对于上模是稠密的。特别地,(e2, f2) (\mathcal {E}_2, \mathcal {F}_2)恢复了Barlow和Bass [Ann]构造的正则Dirichlet形式。也许吧。统计学家,25 (1989),pp. 225-257]或Kusuoka和Zhou[可能]。理论相关领域93 (1992),pp 169-196。我们还提供了p \数学{E}_{p}能量度量与所构造的p -能量相关联,并研究了其自相似和链式法则等基本性质。
Construction of 𝑝-energy and associated energy measures on Sierpiński carpets
We establish the existence of a scaling limit Ep\mathcal {E}_p of discrete pp-energies on the graphs approximating a generalized Sierpiński carpet for p>dARCp > d_{\mathrm {ARC}}, where dARCd_{\mathrm {ARC}} is the Ahlfors regular conformal dimension of the underlying generalized Sierpiński carpet. Furthermore, the function space Fp\mathcal {F}_{p} defined as the collection of functions with finite pp-energies is shown to be a reflexive and separable Banach space that is dense in the set of continuous functions with respect to the supremum norm. In particular, (E2,F2)(\mathcal {E}_2, \mathcal {F}_2) recovers the canonical regular Dirichlet form constructed by Barlow and Bass [Ann. Inst. H. Poincaré Probab. Statist. 25 (1989), pp. 225–257] or Kusuoka and Zhou [Probab. Theory Related Fields 93 (1992), pp. 169–196]. We also provide Ep\mathcal {E}_{p}-energy measures associated with the constructed pp-energy and investigate its basic properties like self-similarity and chain rule.
期刊介绍:
All articles submitted to this journal are peer-reviewed. The AMS has a single blind peer-review process in which the reviewers know who the authors of the manuscript are, but the authors do not have access to the information on who the peer reviewers are.
This journal is devoted to research articles in all areas of pure and applied mathematics. To be published in the Transactions, a paper must be correct, new, and significant. Further, it must be well written and of interest to a substantial number of mathematicians. Piecemeal results, such as an inconclusive step toward an unproved major theorem or a minor variation on a known result, are in general not acceptable for publication. Papers of less than 15 printed pages that meet the above criteria should be submitted to the Proceedings of the American Mathematical Society. Published pages are the same size as those generated in the style files provided for AMS-LaTeX.