{"title":"贫营养海洋中溶解微量金属对沙尘暴、沉积物再悬浮和山洪的响应","authors":"T. Benaltabet, G. Lapid, A. Torfstein","doi":"10.1029/2023GB007858","DOIUrl":null,"url":null,"abstract":"<p>Trace metals (TM) delivered by atmospheric dust play a key role in oceanic biogeochemical cycles. However, the impact of short-term environmental perturbations such as dust storms and sediment resuspension events on the oceanic water column is poorly constrained due to the low temporal sampling resolution and episodic nature of these events. The Gulf of Aqaba (GoA), Red Sea, is a highly accessible deep oligotrophic water body featuring exceptionally high atmospheric deposition fluxes that provide the main source of TMs to the GoA surface water. Here, we present a 2-year time series of dissolved manganese, cobalt, nickel, copper, zinc, cadmium, and phosphate concentration profiles sampled in the GoA. The study focuses on daily time scale dust storms and episodes of sediment resuspension to quantify the immediate impact of these events on dissolved TM cycling. Counter-intuitively, upper mixed layer TM inventories decrease with increasing aerosol loads, with the effects of aerosol-induced TM scavenging and dissolution peaking 5–6 days after aerosol deposition. Dust storms promote intense TM scavenging, with TM inventories decreasing by up to 44%, but seldom lead to TM enrichment. Similarly, sediment resuspension and flash flood events triggered significant TM scavenging. These findings highlight the potential dual role of atmospheric deposition in the oceans as a long-term source of dissolved TMs and a short-term sink. The in situ observations presented here may be used to understand and quantify the global impact of abrupt environmental events on oceanic chemical compositions.</p>","PeriodicalId":12729,"journal":{"name":"Global Biogeochemical Cycles","volume":null,"pages":null},"PeriodicalIF":5.4000,"publicationDate":"2023-10-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://agupubs.onlinelibrary.wiley.com/doi/epdf/10.1029/2023GB007858","citationCount":"0","resultStr":"{\"title\":\"Response of Dissolved Trace Metals to Dust Storms, Sediment Resuspension, and Flash Floods in Oligotrophic Oceans\",\"authors\":\"T. Benaltabet, G. Lapid, A. Torfstein\",\"doi\":\"10.1029/2023GB007858\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Trace metals (TM) delivered by atmospheric dust play a key role in oceanic biogeochemical cycles. However, the impact of short-term environmental perturbations such as dust storms and sediment resuspension events on the oceanic water column is poorly constrained due to the low temporal sampling resolution and episodic nature of these events. The Gulf of Aqaba (GoA), Red Sea, is a highly accessible deep oligotrophic water body featuring exceptionally high atmospheric deposition fluxes that provide the main source of TMs to the GoA surface water. Here, we present a 2-year time series of dissolved manganese, cobalt, nickel, copper, zinc, cadmium, and phosphate concentration profiles sampled in the GoA. The study focuses on daily time scale dust storms and episodes of sediment resuspension to quantify the immediate impact of these events on dissolved TM cycling. Counter-intuitively, upper mixed layer TM inventories decrease with increasing aerosol loads, with the effects of aerosol-induced TM scavenging and dissolution peaking 5–6 days after aerosol deposition. Dust storms promote intense TM scavenging, with TM inventories decreasing by up to 44%, but seldom lead to TM enrichment. Similarly, sediment resuspension and flash flood events triggered significant TM scavenging. These findings highlight the potential dual role of atmospheric deposition in the oceans as a long-term source of dissolved TMs and a short-term sink. The in situ observations presented here may be used to understand and quantify the global impact of abrupt environmental events on oceanic chemical compositions.</p>\",\"PeriodicalId\":12729,\"journal\":{\"name\":\"Global Biogeochemical Cycles\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":5.4000,\"publicationDate\":\"2023-10-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://agupubs.onlinelibrary.wiley.com/doi/epdf/10.1029/2023GB007858\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Global Biogeochemical Cycles\",\"FirstCategoryId\":\"89\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1029/2023GB007858\",\"RegionNum\":2,\"RegionCategory\":\"地球科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENVIRONMENTAL SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Global Biogeochemical Cycles","FirstCategoryId":"89","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1029/2023GB007858","RegionNum":2,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENVIRONMENTAL SCIENCES","Score":null,"Total":0}
Response of Dissolved Trace Metals to Dust Storms, Sediment Resuspension, and Flash Floods in Oligotrophic Oceans
Trace metals (TM) delivered by atmospheric dust play a key role in oceanic biogeochemical cycles. However, the impact of short-term environmental perturbations such as dust storms and sediment resuspension events on the oceanic water column is poorly constrained due to the low temporal sampling resolution and episodic nature of these events. The Gulf of Aqaba (GoA), Red Sea, is a highly accessible deep oligotrophic water body featuring exceptionally high atmospheric deposition fluxes that provide the main source of TMs to the GoA surface water. Here, we present a 2-year time series of dissolved manganese, cobalt, nickel, copper, zinc, cadmium, and phosphate concentration profiles sampled in the GoA. The study focuses on daily time scale dust storms and episodes of sediment resuspension to quantify the immediate impact of these events on dissolved TM cycling. Counter-intuitively, upper mixed layer TM inventories decrease with increasing aerosol loads, with the effects of aerosol-induced TM scavenging and dissolution peaking 5–6 days after aerosol deposition. Dust storms promote intense TM scavenging, with TM inventories decreasing by up to 44%, but seldom lead to TM enrichment. Similarly, sediment resuspension and flash flood events triggered significant TM scavenging. These findings highlight the potential dual role of atmospheric deposition in the oceans as a long-term source of dissolved TMs and a short-term sink. The in situ observations presented here may be used to understand and quantify the global impact of abrupt environmental events on oceanic chemical compositions.
期刊介绍:
Global Biogeochemical Cycles (GBC) features research on regional to global biogeochemical interactions, as well as more local studies that demonstrate fundamental implications for biogeochemical processing at regional or global scales. Published papers draw on a wide array of methods and knowledge and extend in time from the deep geologic past to recent historical and potential future interactions. This broad scope includes studies that elucidate human activities as interactive components of biogeochemical cycles and physical Earth Systems including climate. Authors are required to make their work accessible to a broad interdisciplinary range of scientists.