面向下一代物联网的印刷单极天线:窄带物联网(NB-IoT)

Q3 Materials Science
Sneha Bhardwaj, Praveen Kumar Malik, Tanvir Islam, Anita Gehlot, Sudipta Das, Sivaji Asha
{"title":"面向下一代物联网的印刷单极天线:窄带物联网(NB-IoT)","authors":"Sneha Bhardwaj, Praveen Kumar Malik, Tanvir Islam, Anita Gehlot, Sudipta Das, Sivaji Asha","doi":"10.2528/pierc23090202","DOIUrl":null,"url":null,"abstract":"|This article introduces a planar monopole antenna specially designed for NB-IoT module devices. The preferred choice for Internet of Things (IoT) technology is the Narrow-Band Internet of Things (NB-IoT) due to its extensive coverage and low power consumption. NB-IoT is speci(cid:12)cally designed for IoT applications. A circular patch antenna with dimensions of 30 mm (cid:2) 60 mm is fabricated, which is speci(cid:12)cally tailored for the NB-IoT module. The antenna dimensions are meticulously chosen to ensure compatibility with the device module, considering the NB-IoT B1 (2100) and B3 (1800) frequency bands. Among various patch shapes, the circular design is preferred for its advantages over hexagon and square patches. The desired antenna con(cid:12)guration combines a square-slotted patch with a monopole ground plane, and it offers several advantages in terms of design simplicity, compact size, and characteristics such as broad bandwidth, acceptable gain, and high radiation efficiency. The design process employs HFSS Software and utilizes an FR4 substrate of 1.6 mm thickness. Operating at resonance frequencies of 2.1 GHz and 1.8 GHz, the antenna covers a broad frequency spectrum of 1100 MHz (1.5 to 2.6 GHz) with a fractional bandwidth of 53.65%. The suggested antenna achieves a peak gain of 3.3 dB and maximum radiation efficiency of 96% within its operating band. It exhibits an omnidirectional radiation pattern, meeting the speci(cid:12)c requirements of NB-IoT technologies. Experimental measurements of the fabricated antenna validate the results achieved from the simulated data.","PeriodicalId":20699,"journal":{"name":"Progress in Electromagnetics Research C","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A Printed Monopole Antenna for Next Generation Internet of Things: Narrow Band Internet of Things (NB-IoT)\",\"authors\":\"Sneha Bhardwaj, Praveen Kumar Malik, Tanvir Islam, Anita Gehlot, Sudipta Das, Sivaji Asha\",\"doi\":\"10.2528/pierc23090202\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"|This article introduces a planar monopole antenna specially designed for NB-IoT module devices. The preferred choice for Internet of Things (IoT) technology is the Narrow-Band Internet of Things (NB-IoT) due to its extensive coverage and low power consumption. NB-IoT is speci(cid:12)cally designed for IoT applications. A circular patch antenna with dimensions of 30 mm (cid:2) 60 mm is fabricated, which is speci(cid:12)cally tailored for the NB-IoT module. The antenna dimensions are meticulously chosen to ensure compatibility with the device module, considering the NB-IoT B1 (2100) and B3 (1800) frequency bands. Among various patch shapes, the circular design is preferred for its advantages over hexagon and square patches. The desired antenna con(cid:12)guration combines a square-slotted patch with a monopole ground plane, and it offers several advantages in terms of design simplicity, compact size, and characteristics such as broad bandwidth, acceptable gain, and high radiation efficiency. The design process employs HFSS Software and utilizes an FR4 substrate of 1.6 mm thickness. Operating at resonance frequencies of 2.1 GHz and 1.8 GHz, the antenna covers a broad frequency spectrum of 1100 MHz (1.5 to 2.6 GHz) with a fractional bandwidth of 53.65%. The suggested antenna achieves a peak gain of 3.3 dB and maximum radiation efficiency of 96% within its operating band. It exhibits an omnidirectional radiation pattern, meeting the speci(cid:12)c requirements of NB-IoT technologies. Experimental measurements of the fabricated antenna validate the results achieved from the simulated data.\",\"PeriodicalId\":20699,\"journal\":{\"name\":\"Progress in Electromagnetics Research C\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Progress in Electromagnetics Research C\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.2528/pierc23090202\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"Materials Science\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Progress in Electromagnetics Research C","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2528/pierc23090202","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Materials Science","Score":null,"Total":0}
引用次数: 0

摘要

本文章由计算机程序翻译,如有差异,请以英文原文为准。
A Printed Monopole Antenna for Next Generation Internet of Things: Narrow Band Internet of Things (NB-IoT)
|This article introduces a planar monopole antenna specially designed for NB-IoT module devices. The preferred choice for Internet of Things (IoT) technology is the Narrow-Band Internet of Things (NB-IoT) due to its extensive coverage and low power consumption. NB-IoT is speci(cid:12)cally designed for IoT applications. A circular patch antenna with dimensions of 30 mm (cid:2) 60 mm is fabricated, which is speci(cid:12)cally tailored for the NB-IoT module. The antenna dimensions are meticulously chosen to ensure compatibility with the device module, considering the NB-IoT B1 (2100) and B3 (1800) frequency bands. Among various patch shapes, the circular design is preferred for its advantages over hexagon and square patches. The desired antenna con(cid:12)guration combines a square-slotted patch with a monopole ground plane, and it offers several advantages in terms of design simplicity, compact size, and characteristics such as broad bandwidth, acceptable gain, and high radiation efficiency. The design process employs HFSS Software and utilizes an FR4 substrate of 1.6 mm thickness. Operating at resonance frequencies of 2.1 GHz and 1.8 GHz, the antenna covers a broad frequency spectrum of 1100 MHz (1.5 to 2.6 GHz) with a fractional bandwidth of 53.65%. The suggested antenna achieves a peak gain of 3.3 dB and maximum radiation efficiency of 96% within its operating band. It exhibits an omnidirectional radiation pattern, meeting the speci(cid:12)c requirements of NB-IoT technologies. Experimental measurements of the fabricated antenna validate the results achieved from the simulated data.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Progress in Electromagnetics Research C
Progress in Electromagnetics Research C Materials Science-Electronic, Optical and Magnetic Materials
CiteScore
2.70
自引率
0.00%
发文量
113
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信