基于fpga的卷积层推理并行化在动态LEO卫星网络中的实时路由

Daeyeon Kim, Heoncheol Lee, Dongshik Won, Myoung-Hun Han
{"title":"基于fpga的卷积层推理并行化在动态LEO卫星网络中的实时路由","authors":"Daeyeon Kim, Heoncheol Lee, Dongshik Won, Myoung-Hun Han","doi":"10.14801/jkiit.2023.21.8.79","DOIUrl":null,"url":null,"abstract":"본 논문에서는 저궤도 위성 네트워크(LEO)의 실시간 라우팅 문제를 다룬다. 기존의 라우팅 알고리즘은 동적인 위성 네트워크 환경에 효과적으로 적응하는 데 한계가 있음을 확인하였다. 이에 따라, 본 연구는 강화학습을 기반으로 한 라우팅 방법을 제시하고, 이를 Dueling Deep Q-Network 모델로 구현하였다. 그러나 위성상에서의 추론 과정은 제한된 연산 능력으로 인해 실시간 요구 사항을 만족시키기 어려움이 있었고, 이를 해결하기 위해, 본 연구에서는 컨볼루션층의 추론을 병렬화를 통해 추론 속도를 가속화 하는 방법을 제안하였다. 실험 결과, 제안된 방법은 기존 방법 대비 컨볼루션층 수행시간이 약 90.2%, 전체 알고리즘 수행시간은 약 29.0% 단축된 결과를 나타내었다.","PeriodicalId":498669,"journal":{"name":"Journal of Korean Institute of Information Technology","volume":"73 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-08-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"FPGA-based Inference Parallelization of Convolutional Layers for Real-Time Routing in Dynamic LEO Satellite Networks\",\"authors\":\"Daeyeon Kim, Heoncheol Lee, Dongshik Won, Myoung-Hun Han\",\"doi\":\"10.14801/jkiit.2023.21.8.79\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"본 논문에서는 저궤도 위성 네트워크(LEO)의 실시간 라우팅 문제를 다룬다. 기존의 라우팅 알고리즘은 동적인 위성 네트워크 환경에 효과적으로 적응하는 데 한계가 있음을 확인하였다. 이에 따라, 본 연구는 강화학습을 기반으로 한 라우팅 방법을 제시하고, 이를 Dueling Deep Q-Network 모델로 구현하였다. 그러나 위성상에서의 추론 과정은 제한된 연산 능력으로 인해 실시간 요구 사항을 만족시키기 어려움이 있었고, 이를 해결하기 위해, 본 연구에서는 컨볼루션층의 추론을 병렬화를 통해 추론 속도를 가속화 하는 방법을 제안하였다. 실험 결과, 제안된 방법은 기존 방법 대비 컨볼루션층 수행시간이 약 90.2%, 전체 알고리즘 수행시간은 약 29.0% 단축된 결과를 나타내었다.\",\"PeriodicalId\":498669,\"journal\":{\"name\":\"Journal of Korean Institute of Information Technology\",\"volume\":\"73 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-08-31\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Korean Institute of Information Technology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.14801/jkiit.2023.21.8.79\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Korean Institute of Information Technology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.14801/jkiit.2023.21.8.79","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

本文讨论的是低轨道卫星网络(LEO)的实时路由问题。现有的路由算法确认了其对动态卫星网络环境的有效适应是有限的。因此,本研究提出了一种基于强化学习的路由方法,并将其体现为Dueling Deep Q-Network模型。然而,由于有限的运算能力,卫星上的推理过程很难满足实时的要求,为了解决这一问题,本研究提出了将聚合层的推理并行化来加速推理速度的方法。实验结果表明,与现有方法相比,该方法的聚合层执行时间约缩短90.2%,整体算法执行时间约缩短29.0%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
FPGA-based Inference Parallelization of Convolutional Layers for Real-Time Routing in Dynamic LEO Satellite Networks
본 논문에서는 저궤도 위성 네트워크(LEO)의 실시간 라우팅 문제를 다룬다. 기존의 라우팅 알고리즘은 동적인 위성 네트워크 환경에 효과적으로 적응하는 데 한계가 있음을 확인하였다. 이에 따라, 본 연구는 강화학습을 기반으로 한 라우팅 방법을 제시하고, 이를 Dueling Deep Q-Network 모델로 구현하였다. 그러나 위성상에서의 추론 과정은 제한된 연산 능력으로 인해 실시간 요구 사항을 만족시키기 어려움이 있었고, 이를 해결하기 위해, 본 연구에서는 컨볼루션층의 추론을 병렬화를 통해 추론 속도를 가속화 하는 방법을 제안하였다. 실험 결과, 제안된 방법은 기존 방법 대비 컨볼루션층 수행시간이 약 90.2%, 전체 알고리즘 수행시간은 약 29.0% 단축된 결과를 나타내었다.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信