时变电梯牵引系统拉扭耦合振动的理论与实验研究

IF 2 3区 工程技术 Q3 MATERIALS SCIENCE, MULTIDISCIPLINARY
Peng Xu, Qifeng Peng, Fusong Jin, Jianghong Xue, Hong Yuan
{"title":"时变电梯牵引系统拉扭耦合振动的理论与实验研究","authors":"Peng Xu,&nbsp;Qifeng Peng,&nbsp;Fusong Jin,&nbsp;Jianghong Xue,&nbsp;Hong Yuan","doi":"10.1007/s10338-023-00429-5","DOIUrl":null,"url":null,"abstract":"<div><p>Elevators used in ultra-high buildings are prone to vibrating due to their ultra-long traction ropes, which significantly affects the comfort and safety of high-speed elevators. Therefore, vibration of the elevator has always been a topic of research interest. This paper presents a theoretical model for analyzing the tension–torsion coupling vibration of the time-varying elevator traction system. The constitutive relations with the tension–torsion coupling effect of the wire rope are reduced by analyzing the deformation mechanism of the spiral winding wire rope. Based on Hamilton’s principle, the equations of motion and corresponding boundary conditions for the tension–torsion coupling vibration of the elevator traction system are derived. The Galerkin method is employed to account for the influence of nonlinear boundary conditions and to transform the equations of motion into discrete ones with variable coefficients of time, which are solved using the Newmark-β method. The accuracy of the proposed model is justified by the good agreement between theoretical predictions and experimental results, following which, the influence of the operation status and structural parameters of the elevator traction system on its vibration performance is discussed in detail.</p></div>","PeriodicalId":50892,"journal":{"name":"Acta Mechanica Solida Sinica","volume":"36 6","pages":"899 - 913"},"PeriodicalIF":2.0000,"publicationDate":"2023-10-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Theoretical and Experimental Study on Tension–Torsion Coupling Vibration for Time-Varying Elevator Traction System\",\"authors\":\"Peng Xu,&nbsp;Qifeng Peng,&nbsp;Fusong Jin,&nbsp;Jianghong Xue,&nbsp;Hong Yuan\",\"doi\":\"10.1007/s10338-023-00429-5\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Elevators used in ultra-high buildings are prone to vibrating due to their ultra-long traction ropes, which significantly affects the comfort and safety of high-speed elevators. Therefore, vibration of the elevator has always been a topic of research interest. This paper presents a theoretical model for analyzing the tension–torsion coupling vibration of the time-varying elevator traction system. The constitutive relations with the tension–torsion coupling effect of the wire rope are reduced by analyzing the deformation mechanism of the spiral winding wire rope. Based on Hamilton’s principle, the equations of motion and corresponding boundary conditions for the tension–torsion coupling vibration of the elevator traction system are derived. The Galerkin method is employed to account for the influence of nonlinear boundary conditions and to transform the equations of motion into discrete ones with variable coefficients of time, which are solved using the Newmark-β method. The accuracy of the proposed model is justified by the good agreement between theoretical predictions and experimental results, following which, the influence of the operation status and structural parameters of the elevator traction system on its vibration performance is discussed in detail.</p></div>\",\"PeriodicalId\":50892,\"journal\":{\"name\":\"Acta Mechanica Solida Sinica\",\"volume\":\"36 6\",\"pages\":\"899 - 913\"},\"PeriodicalIF\":2.0000,\"publicationDate\":\"2023-10-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Acta Mechanica Solida Sinica\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s10338-023-00429-5\",\"RegionNum\":3,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MATERIALS SCIENCE, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Acta Mechanica Solida Sinica","FirstCategoryId":"5","ListUrlMain":"https://link.springer.com/article/10.1007/s10338-023-00429-5","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

超高层建筑中使用的电梯由于牵引绳超长,容易产生振动,严重影响高速电梯的舒适性和安全性。因此,电梯的振动问题一直是人们感兴趣的研究课题。本文建立了时变电梯牵引系统拉扭耦合振动分析的理论模型。通过对螺旋缠绕钢丝绳变形机理的分析,简化了钢丝绳拉扭耦合效应与本构关系。基于哈密顿原理,推导了电梯牵引系统拉扭耦合振动的运动方程和相应的边界条件。采用伽辽金方法考虑非线性边界条件的影响,将运动方程转化为具有变时间系数的离散方程,用Newmark-β方法求解。理论预测与实验结果吻合较好,验证了模型的准确性,并详细讨论了电梯曳引系统的运行状态和结构参数对其振动性能的影响。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Theoretical and Experimental Study on Tension–Torsion Coupling Vibration for Time-Varying Elevator Traction System

Theoretical and Experimental Study on Tension–Torsion Coupling Vibration for Time-Varying Elevator Traction System

Elevators used in ultra-high buildings are prone to vibrating due to their ultra-long traction ropes, which significantly affects the comfort and safety of high-speed elevators. Therefore, vibration of the elevator has always been a topic of research interest. This paper presents a theoretical model for analyzing the tension–torsion coupling vibration of the time-varying elevator traction system. The constitutive relations with the tension–torsion coupling effect of the wire rope are reduced by analyzing the deformation mechanism of the spiral winding wire rope. Based on Hamilton’s principle, the equations of motion and corresponding boundary conditions for the tension–torsion coupling vibration of the elevator traction system are derived. The Galerkin method is employed to account for the influence of nonlinear boundary conditions and to transform the equations of motion into discrete ones with variable coefficients of time, which are solved using the Newmark-β method. The accuracy of the proposed model is justified by the good agreement between theoretical predictions and experimental results, following which, the influence of the operation status and structural parameters of the elevator traction system on its vibration performance is discussed in detail.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Acta Mechanica Solida Sinica
Acta Mechanica Solida Sinica 物理-材料科学:综合
CiteScore
3.80
自引率
9.10%
发文量
1088
审稿时长
9 months
期刊介绍: Acta Mechanica Solida Sinica aims to become the best journal of solid mechanics in China and a worldwide well-known one in the field of mechanics, by providing original, perspective and even breakthrough theories and methods for the research on solid mechanics. The Journal is devoted to the publication of research papers in English in all fields of solid-state mechanics and its related disciplines in science, technology and engineering, with a balanced coverage on analytical, experimental, numerical and applied investigations. Articles, Short Communications, Discussions on previously published papers, and invitation-based Reviews are published bimonthly. The maximum length of an article is 30 pages, including equations, figures and tables
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信