结合hessian驱动阻尼和Tikhonov正则化的惯性动力学下轨迹的强收敛

IF 1.4 4区 数学 Q2 MATHEMATICS, APPLIED
Akram Chahid Bagy, Zaki Chbani, Hassan Riahi
{"title":"结合hessian驱动阻尼和Tikhonov正则化的惯性动力学下轨迹的强收敛","authors":"Akram Chahid Bagy, Zaki Chbani, Hassan Riahi","doi":"10.1080/01630563.2023.2262828","DOIUrl":null,"url":null,"abstract":"AbstractLet H be a real Hilbert space, and f:H→R be a convex twice differentiable function whose solution set argminf is nonempty. We investigate the long time behavior of the trajectories of the vanishing damped dynamical system with Tikhonov regularizing term and Hessian-driven damping x¨(t)+α x˙(t)+δ∇2f(x(t))x˙(t)+β(t)∇f(x(t))+cx(t)=0 where α,c,δ are three positive constants, and the time scale parameter β is a positive nondecreasing function such that limt→+∞β(t)=+∞. Under some assumptions on the parameter β, we will show rapid convergence of values, strong convergence toward the minimum norm element of argminf, and rapid convergence of the gradients toward zero. Note that the Hessian-driven damping significantly reduces the oscillatory aspects, and the time scale parameter β improves the rate of convergences mentioned above. As particular cases of β, we set β(t)=tp ln q(t), for (p,q)∈(R+)2∖{(0,0)}, and β(t)=eγtp, for p∈]0,1[ and γ>0. The manuscript concludes with two numerical examples and comments on their performance.KEYWORDS: Damped dynamical systemfast convergenceHessian-driven dampingHilbert spacestrong convergenceTikhonov regularizationMATHEMATICS SUBJECT CLASSIFICATION: 37N4046N1049M3065K0565K1090B5090C25","PeriodicalId":54707,"journal":{"name":"Numerical Functional Analysis and Optimization","volume":"31 6 1","pages":"0"},"PeriodicalIF":1.4000,"publicationDate":"2023-10-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Strong Convergence of Trajectories via Inertial Dynamics Combining Hessian-Driven Damping and Tikhonov Regularization for General Convex Minimizations\",\"authors\":\"Akram Chahid Bagy, Zaki Chbani, Hassan Riahi\",\"doi\":\"10.1080/01630563.2023.2262828\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"AbstractLet H be a real Hilbert space, and f:H→R be a convex twice differentiable function whose solution set argminf is nonempty. We investigate the long time behavior of the trajectories of the vanishing damped dynamical system with Tikhonov regularizing term and Hessian-driven damping x¨(t)+α x˙(t)+δ∇2f(x(t))x˙(t)+β(t)∇f(x(t))+cx(t)=0 where α,c,δ are three positive constants, and the time scale parameter β is a positive nondecreasing function such that limt→+∞β(t)=+∞. Under some assumptions on the parameter β, we will show rapid convergence of values, strong convergence toward the minimum norm element of argminf, and rapid convergence of the gradients toward zero. Note that the Hessian-driven damping significantly reduces the oscillatory aspects, and the time scale parameter β improves the rate of convergences mentioned above. As particular cases of β, we set β(t)=tp ln q(t), for (p,q)∈(R+)2∖{(0,0)}, and β(t)=eγtp, for p∈]0,1[ and γ>0. The manuscript concludes with two numerical examples and comments on their performance.KEYWORDS: Damped dynamical systemfast convergenceHessian-driven dampingHilbert spacestrong convergenceTikhonov regularizationMATHEMATICS SUBJECT CLASSIFICATION: 37N4046N1049M3065K0565K1090B5090C25\",\"PeriodicalId\":54707,\"journal\":{\"name\":\"Numerical Functional Analysis and Optimization\",\"volume\":\"31 6 1\",\"pages\":\"0\"},\"PeriodicalIF\":1.4000,\"publicationDate\":\"2023-10-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Numerical Functional Analysis and Optimization\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1080/01630563.2023.2262828\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATHEMATICS, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Numerical Functional Analysis and Optimization","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1080/01630563.2023.2262828","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 0

摘要

摘要设H为实数Hilbert空间,f:H→R为解集arminf非空的凸二次可微函数。我们研究了具有Tikhonov正则化项和hessian驱动阻尼x¨(t)+α x˙(t)+δ∇2f(x(t))x˙(t)+β(t)∇f(x(t))+cx(t)=0的消失阻尼动力系统的长时间行为,其中α、c、δ是三个正常数,时间尺度参数β是一个正的非递减函数,使得极限→+∞β(t)=+∞。在参数β的某些假设下,我们将证明值的快速收敛,向argminf的最小范数元素的强收敛,以及梯度向零的快速收敛。注意,hessian驱动的阻尼显著降低了振荡方面,时间尺度参数β提高了上述收敛速度。作为β的特殊情况下,我们设置β(t) = tp ln q (t)为(p, q)∈(R +) 2∖{(0,0)},和β(t) = eγtp, p∈]0,1和γ> 0。文章最后给出了两个数值例子,并对它们的性能进行了评价。关键词:阻尼动力系统快速收敛;hessia驱动阻尼;hilbert空间;强收敛
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Strong Convergence of Trajectories via Inertial Dynamics Combining Hessian-Driven Damping and Tikhonov Regularization for General Convex Minimizations
AbstractLet H be a real Hilbert space, and f:H→R be a convex twice differentiable function whose solution set argminf is nonempty. We investigate the long time behavior of the trajectories of the vanishing damped dynamical system with Tikhonov regularizing term and Hessian-driven damping x¨(t)+α x˙(t)+δ∇2f(x(t))x˙(t)+β(t)∇f(x(t))+cx(t)=0 where α,c,δ are three positive constants, and the time scale parameter β is a positive nondecreasing function such that limt→+∞β(t)=+∞. Under some assumptions on the parameter β, we will show rapid convergence of values, strong convergence toward the minimum norm element of argminf, and rapid convergence of the gradients toward zero. Note that the Hessian-driven damping significantly reduces the oscillatory aspects, and the time scale parameter β improves the rate of convergences mentioned above. As particular cases of β, we set β(t)=tp ln q(t), for (p,q)∈(R+)2∖{(0,0)}, and β(t)=eγtp, for p∈]0,1[ and γ>0. The manuscript concludes with two numerical examples and comments on their performance.KEYWORDS: Damped dynamical systemfast convergenceHessian-driven dampingHilbert spacestrong convergenceTikhonov regularizationMATHEMATICS SUBJECT CLASSIFICATION: 37N4046N1049M3065K0565K1090B5090C25
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
2.40
自引率
8.30%
发文量
74
审稿时长
6-12 weeks
期刊介绍: Numerical Functional Analysis and Optimization is a journal aimed at development and applications of functional analysis and operator-theoretic methods in numerical analysis, optimization and approximation theory, control theory, signal and image processing, inverse and ill-posed problems, applied and computational harmonic analysis, operator equations, and nonlinear functional analysis. Not all high-quality papers within the union of these fields are within the scope of NFAO. Generalizations and abstractions that significantly advance their fields and reinforce the concrete by providing new insight and important results for problems arising from applications are welcome. On the other hand, technical generalizations for their own sake with window dressing about applications, or variants of known results and algorithms, are not suitable for this journal. Numerical Functional Analysis and Optimization publishes about 70 papers per year. It is our current policy to limit consideration to one submitted paper by any author/co-author per two consecutive years. Exception will be made for seminal papers.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信