利用人工神经网络进行现场环境和电气测量的光伏板发电预测建模

Oscar Lobato-Nostroza, Gerardo Marx Chávez-Campos, Antony Morales-Cervantes, Yvo Marcelo Chiaradia-Masselli, Rafael Lara-Hernández, Adriana del Carmen Téllez-Anguiano, Miguelangel Fraga-Aguilar
{"title":"利用人工神经网络进行现场环境和电气测量的光伏板发电预测建模","authors":"Oscar Lobato-Nostroza, Gerardo Marx Chávez-Campos, Antony Morales-Cervantes, Yvo Marcelo Chiaradia-Masselli, Rafael Lara-Hernández, Adriana del Carmen Téllez-Anguiano, Miguelangel Fraga-Aguilar","doi":"10.3390/metrology3040021","DOIUrl":null,"url":null,"abstract":"Weather disturbances pose a significant challenge when estimating the energy production of photovoltaic panel systems. Energy production and forecasting models have recently been used to improve energy estimations and maintenance tasks. However, these models often rely on environmental measurements from meteorological units far from the photovoltaic systems. To enhance the accuracy of the developed model, a measurement Internet of Things (IoT) prototype was developed in this study, which collects on-site voltage and current measurements from the panel, as well as the environmental factors of lighting, temperature, and humidity in the system’s proximity. The measurements were then subjected to correlation analysis, and various artificial neural networks (ANNs) were implemented to develop energy estimations and forecasting models. The most effective model utilizes lighting, temperature, and humidity. The model achieves a root mean squared error (RMSE) of 0.255326464. The ANN models are compared to an MLR model using the same data. Using previous power measurements and actual weather data, a non-autoregressive neural network (Non-AR-NN) model forecasts future output power values. The best Non-AR-NN model produces an RMSE of 0.1160, resulting in accurate predictions based on the IoT device.","PeriodicalId":100666,"journal":{"name":"Industrial Metrology","volume":"286 ","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-10-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Predictive Modeling of Photovoltaic Panel Power Production through On-Site Environmental and Electrical Measurements Using Artificial Neural Networks\",\"authors\":\"Oscar Lobato-Nostroza, Gerardo Marx Chávez-Campos, Antony Morales-Cervantes, Yvo Marcelo Chiaradia-Masselli, Rafael Lara-Hernández, Adriana del Carmen Téllez-Anguiano, Miguelangel Fraga-Aguilar\",\"doi\":\"10.3390/metrology3040021\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Weather disturbances pose a significant challenge when estimating the energy production of photovoltaic panel systems. Energy production and forecasting models have recently been used to improve energy estimations and maintenance tasks. However, these models often rely on environmental measurements from meteorological units far from the photovoltaic systems. To enhance the accuracy of the developed model, a measurement Internet of Things (IoT) prototype was developed in this study, which collects on-site voltage and current measurements from the panel, as well as the environmental factors of lighting, temperature, and humidity in the system’s proximity. The measurements were then subjected to correlation analysis, and various artificial neural networks (ANNs) were implemented to develop energy estimations and forecasting models. The most effective model utilizes lighting, temperature, and humidity. The model achieves a root mean squared error (RMSE) of 0.255326464. The ANN models are compared to an MLR model using the same data. Using previous power measurements and actual weather data, a non-autoregressive neural network (Non-AR-NN) model forecasts future output power values. The best Non-AR-NN model produces an RMSE of 0.1160, resulting in accurate predictions based on the IoT device.\",\"PeriodicalId\":100666,\"journal\":{\"name\":\"Industrial Metrology\",\"volume\":\"286 \",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-10-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Industrial Metrology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.3390/metrology3040021\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Industrial Metrology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3390/metrology3040021","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

天气干扰对光伏板系统的发电量估算提出了重大挑战。能源生产和预测模型最近被用于改进能源估计和维护任务。然而,这些模型通常依赖于远离光伏系统的气象单位的环境测量。为了提高所开发模型的准确性,本研究开发了一个测量物联网(IoT)原型,该原型可以从面板上收集现场电压和电流测量数据,以及系统附近的照明、温度和湿度等环境因素。然后对测量结果进行相关性分析,并使用各种人工神经网络(ann)来开发能量估计和预测模型。最有效的模型利用光照、温度和湿度。该模型的均方根误差(RMSE)为0.255326464。将人工神经网络模型与使用相同数据的MLR模型进行比较。利用以前的功率测量和实际天气数据,非自回归神经网络(Non-AR-NN)模型预测未来的输出功率值。最好的非ar - nn模型产生的RMSE为0.1160,从而基于物联网设备进行准确的预测。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Predictive Modeling of Photovoltaic Panel Power Production through On-Site Environmental and Electrical Measurements Using Artificial Neural Networks
Weather disturbances pose a significant challenge when estimating the energy production of photovoltaic panel systems. Energy production and forecasting models have recently been used to improve energy estimations and maintenance tasks. However, these models often rely on environmental measurements from meteorological units far from the photovoltaic systems. To enhance the accuracy of the developed model, a measurement Internet of Things (IoT) prototype was developed in this study, which collects on-site voltage and current measurements from the panel, as well as the environmental factors of lighting, temperature, and humidity in the system’s proximity. The measurements were then subjected to correlation analysis, and various artificial neural networks (ANNs) were implemented to develop energy estimations and forecasting models. The most effective model utilizes lighting, temperature, and humidity. The model achieves a root mean squared error (RMSE) of 0.255326464. The ANN models are compared to an MLR model using the same data. Using previous power measurements and actual weather data, a non-autoregressive neural network (Non-AR-NN) model forecasts future output power values. The best Non-AR-NN model produces an RMSE of 0.1160, resulting in accurate predictions based on the IoT device.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信