变可积性Lp(·)Lebesgue空间中的一个不动点定理

IF 2.2 3区 综合性期刊 Q2 MULTIDISCIPLINARY SCIENCES
Symmetry-Basel Pub Date : 2023-10-30 DOI:10.3390/sym15111999
Amnay Amri, Mohamed Amine Khamsi, Osvaldo D. Méndez
{"title":"变可积性Lp(·)Lebesgue空间中的一个不动点定理","authors":"Amnay Amri, Mohamed Amine Khamsi, Osvaldo D. Méndez","doi":"10.3390/sym15111999","DOIUrl":null,"url":null,"abstract":"We establish a fixed point property for the Lebesgue spaces with variable exponents Lp(·), focusing on the scenario where the exponent closely approaches 1. The proof does not impose any additional conditions. In particular, our investigation centers on ρ-non-expansive mappings defined on convex subsets of Lp(·), satisfying the “condition of uniform decrease” that we define subsequently.","PeriodicalId":48874,"journal":{"name":"Symmetry-Basel","volume":"50 3","pages":"0"},"PeriodicalIF":2.2000,"publicationDate":"2023-10-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A Fixed Point Theorem in the Lebesgue Spaces of Variable Integrability Lp(·)\",\"authors\":\"Amnay Amri, Mohamed Amine Khamsi, Osvaldo D. Méndez\",\"doi\":\"10.3390/sym15111999\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We establish a fixed point property for the Lebesgue spaces with variable exponents Lp(·), focusing on the scenario where the exponent closely approaches 1. The proof does not impose any additional conditions. In particular, our investigation centers on ρ-non-expansive mappings defined on convex subsets of Lp(·), satisfying the “condition of uniform decrease” that we define subsequently.\",\"PeriodicalId\":48874,\"journal\":{\"name\":\"Symmetry-Basel\",\"volume\":\"50 3\",\"pages\":\"0\"},\"PeriodicalIF\":2.2000,\"publicationDate\":\"2023-10-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Symmetry-Basel\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.3390/sym15111999\",\"RegionNum\":3,\"RegionCategory\":\"综合性期刊\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MULTIDISCIPLINARY SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Symmetry-Basel","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3390/sym15111999","RegionNum":3,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
引用次数: 0

摘要

本文建立了变指数Lp(·)的Lebesgue空间的不动点性质,重点讨论了指数趋近于1的情形。该证明不附加任何条件。特别地,我们的研究集中于定义在Lp(·)的凸子集上的ρ-非扩张映射,它满足我们随后定义的“一致减小条件”。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A Fixed Point Theorem in the Lebesgue Spaces of Variable Integrability Lp(·)
We establish a fixed point property for the Lebesgue spaces with variable exponents Lp(·), focusing on the scenario where the exponent closely approaches 1. The proof does not impose any additional conditions. In particular, our investigation centers on ρ-non-expansive mappings defined on convex subsets of Lp(·), satisfying the “condition of uniform decrease” that we define subsequently.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Symmetry-Basel
Symmetry-Basel MULTIDISCIPLINARY SCIENCES-
CiteScore
5.40
自引率
11.10%
发文量
2276
审稿时长
14.88 days
期刊介绍: Symmetry (ISSN 2073-8994), an international and interdisciplinary scientific journal, publishes reviews, regular research papers and short notes. Our aim is to encourage scientists to publish their experimental and theoretical research in as much detail as possible. There is no restriction on the length of the papers. Full experimental and/or methodical details must be provided, so that results can be reproduced.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信