协同克里格的多种形式:多元空间估计量的多样性

IF 2.8 3区 地球科学 Q2 GEOSCIENCES, MULTIDISCIPLINARY
Peter A. Dowd, Eulogio Pardo-Igúzquiza
{"title":"协同克里格的多种形式:多元空间估计量的多样性","authors":"Peter A. Dowd, Eulogio Pardo-Igúzquiza","doi":"10.1007/s11004-023-10104-7","DOIUrl":null,"url":null,"abstract":"Abstract In this expository review paper, we show that co-kriging, a widely used geostatistical multivariate optimal linear estimator, has a diverse range of extensions that we have collected and illustrated to show the potential of this spatial interpolator. In the context of spatial stochastic processes, this paper covers scenarios including increasing the spatial resolution of a spatial variable (downscaling), solving inverse problems, estimating directional derivatives, and spatial interpolation taking boundary conditions into account. All these spatial interpolators are optimal linear estimators in the sense of being unbiased and minimising the variance of the estimation error.","PeriodicalId":51117,"journal":{"name":"Mathematical Geosciences","volume":"43 1","pages":"0"},"PeriodicalIF":2.8000,"publicationDate":"2023-10-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"The Many Forms of Co-kriging: A Diversity of Multivariate Spatial Estimators\",\"authors\":\"Peter A. Dowd, Eulogio Pardo-Igúzquiza\",\"doi\":\"10.1007/s11004-023-10104-7\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract In this expository review paper, we show that co-kriging, a widely used geostatistical multivariate optimal linear estimator, has a diverse range of extensions that we have collected and illustrated to show the potential of this spatial interpolator. In the context of spatial stochastic processes, this paper covers scenarios including increasing the spatial resolution of a spatial variable (downscaling), solving inverse problems, estimating directional derivatives, and spatial interpolation taking boundary conditions into account. All these spatial interpolators are optimal linear estimators in the sense of being unbiased and minimising the variance of the estimation error.\",\"PeriodicalId\":51117,\"journal\":{\"name\":\"Mathematical Geosciences\",\"volume\":\"43 1\",\"pages\":\"0\"},\"PeriodicalIF\":2.8000,\"publicationDate\":\"2023-10-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Mathematical Geosciences\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1007/s11004-023-10104-7\",\"RegionNum\":3,\"RegionCategory\":\"地球科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"GEOSCIENCES, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Mathematical Geosciences","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1007/s11004-023-10104-7","RegionNum":3,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"GEOSCIENCES, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

在这篇解释性的综述文章中,我们展示了共同克里格,一个广泛使用的地统计多元最优线性估计,我们收集并说明了这个空间插值器的潜力,并有不同的扩展范围。在空间随机过程的背景下,本文涵盖的场景包括增加空间变量的空间分辨率(降尺度)、求解逆问题、估计方向导数以及考虑边界条件的空间插值。所有这些空间插值器在无偏性和最小化估计误差方差的意义上都是最优线性估计器。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

The Many Forms of Co-kriging: A Diversity of Multivariate Spatial Estimators

The Many Forms of Co-kriging: A Diversity of Multivariate Spatial Estimators
Abstract In this expository review paper, we show that co-kriging, a widely used geostatistical multivariate optimal linear estimator, has a diverse range of extensions that we have collected and illustrated to show the potential of this spatial interpolator. In the context of spatial stochastic processes, this paper covers scenarios including increasing the spatial resolution of a spatial variable (downscaling), solving inverse problems, estimating directional derivatives, and spatial interpolation taking boundary conditions into account. All these spatial interpolators are optimal linear estimators in the sense of being unbiased and minimising the variance of the estimation error.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Mathematical Geosciences
Mathematical Geosciences 地学-地球科学综合
CiteScore
5.30
自引率
15.40%
发文量
50
审稿时长
>12 weeks
期刊介绍: Mathematical Geosciences (formerly Mathematical Geology) publishes original, high-quality, interdisciplinary papers in geomathematics focusing on quantitative methods and studies of the Earth, its natural resources and the environment. This international publication is the official journal of the IAMG. Mathematical Geosciences is an essential reference for researchers and practitioners of geomathematics who develop and apply quantitative models to earth science and geo-engineering problems.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信