基于氨基异恶唑的原rna

Felix Xu, Dr. Stefan Wiedemann, Dr. Jonas Feldmann, Dr. Sidney Becker, Prof. Dr. Thomas Carell
{"title":"基于氨基异恶唑的原rna","authors":"Felix Xu,&nbsp;Dr. Stefan Wiedemann,&nbsp;Dr. Jonas Feldmann,&nbsp;Dr. Sidney Becker,&nbsp;Prof. Dr. Thomas Carell","doi":"10.1002/ceur.202300057","DOIUrl":null,"url":null,"abstract":"<p>The RNA world hypothesis predicts that life started with the development of replicating and catalytically active RNA, which evolved in a process of molecular evolution to increasingly complex chemical structures. RNA is, however, so complex that it has most likely formed from a precursor (proto-RNA) that was more easily accessible in a prebiotic world. Recently, 3-aminoisoxazoles (IO3) were identified as building blocks that can form under prebiotic conditions and can rearrange to give the nucleoside cytidine (C). The present study shows that the constitutional isomer 5-aminoisoxazole (IO5) can undergo the same reaction to give uridine (U). Both compounds (IO3 and IO5), if embedded in RNA, react selectively to C and U, which are the main pyrimidine nucleosides of the genetic system. Importantly, the stereochemical outcome of the IO5 reaction in RNA depends on the neighboring bases. If they are β-configured RNA nucleosides, the reaction proceeds with high selectivity to give exclusively the β-configured U RNA base (anomeric control).</p>","PeriodicalId":100234,"journal":{"name":"ChemistryEurope","volume":"1 3","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2023-10-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://chemistry-europe.onlinelibrary.wiley.com/doi/epdf/10.1002/ceur.202300057","citationCount":"0","resultStr":"{\"title\":\"An Aminoisoxazole-Based Proto-RNA\",\"authors\":\"Felix Xu,&nbsp;Dr. Stefan Wiedemann,&nbsp;Dr. Jonas Feldmann,&nbsp;Dr. Sidney Becker,&nbsp;Prof. Dr. Thomas Carell\",\"doi\":\"10.1002/ceur.202300057\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>The RNA world hypothesis predicts that life started with the development of replicating and catalytically active RNA, which evolved in a process of molecular evolution to increasingly complex chemical structures. RNA is, however, so complex that it has most likely formed from a precursor (proto-RNA) that was more easily accessible in a prebiotic world. Recently, 3-aminoisoxazoles (IO3) were identified as building blocks that can form under prebiotic conditions and can rearrange to give the nucleoside cytidine (C). The present study shows that the constitutional isomer 5-aminoisoxazole (IO5) can undergo the same reaction to give uridine (U). Both compounds (IO3 and IO5), if embedded in RNA, react selectively to C and U, which are the main pyrimidine nucleosides of the genetic system. Importantly, the stereochemical outcome of the IO5 reaction in RNA depends on the neighboring bases. If they are β-configured RNA nucleosides, the reaction proceeds with high selectivity to give exclusively the β-configured U RNA base (anomeric control).</p>\",\"PeriodicalId\":100234,\"journal\":{\"name\":\"ChemistryEurope\",\"volume\":\"1 3\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-10-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://chemistry-europe.onlinelibrary.wiley.com/doi/epdf/10.1002/ceur.202300057\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ChemistryEurope\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/ceur.202300057\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ChemistryEurope","FirstCategoryId":"1085","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/ceur.202300057","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

RNA世界假说认为,生命始于具有复制能力和催化活性的RNA的出现,并在分子进化过程中进化为越来越复杂的化学结构。然而,RNA是如此复杂,它很可能是由在益生元世界中更容易获得的前体(原RNA)形成的。最近,3 -氨基异恶唑(IO3)被确定为在益生元条件下形成的构建块,并可以重新排列产生核苷胞苷(C)。本研究表明,构形异构体5 -氨基异恶唑(IO5)可以进行相同的反应产生尿苷(U)。如果嵌入RNA中,这两种化合物(IO3和IO5)都可以选择性地与遗传系统的主要嘧啶核苷C和U发生反应。重要的是,RNA中IO5反应的立体化学结果取决于邻近的碱基。如果它们是β配置的RNA核苷,则反应以高选择性进行,只产生β配置的U RNA碱基(异构体对照)。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

An Aminoisoxazole-Based Proto-RNA

An Aminoisoxazole-Based Proto-RNA

The RNA world hypothesis predicts that life started with the development of replicating and catalytically active RNA, which evolved in a process of molecular evolution to increasingly complex chemical structures. RNA is, however, so complex that it has most likely formed from a precursor (proto-RNA) that was more easily accessible in a prebiotic world. Recently, 3-aminoisoxazoles (IO3) were identified as building blocks that can form under prebiotic conditions and can rearrange to give the nucleoside cytidine (C). The present study shows that the constitutional isomer 5-aminoisoxazole (IO5) can undergo the same reaction to give uridine (U). Both compounds (IO3 and IO5), if embedded in RNA, react selectively to C and U, which are the main pyrimidine nucleosides of the genetic system. Importantly, the stereochemical outcome of the IO5 reaction in RNA depends on the neighboring bases. If they are β-configured RNA nucleosides, the reaction proceeds with high selectivity to give exclusively the β-configured U RNA base (anomeric control).

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信