a α-谱Erdős-Sós定理

IF 0.7 4区 数学 Q2 MATHEMATICS
Ming-Zhu Chen, Shuchao Li, Zhao-Ming Li, Yuantian Yu, Xiao-Dong Zhang
{"title":"a α-谱Erdős-Sós定理","authors":"Ming-Zhu Chen, Shuchao Li, Zhao-Ming Li, Yuantian Yu, Xiao-Dong Zhang","doi":"10.37236/11593","DOIUrl":null,"url":null,"abstract":"Let $G$ be a graph and let $\\alpha$ be a real number in $[0,1].$ In 2017, Nikiforov proposed the $A_\\alpha$-matrix for $G$ as $A_{\\alpha}(G)=\\alpha D(G)+(1-\\alpha)A(G)$, where $A(G)$ and $D(G)$ are the adjacency matrix and the degree diagonal matrix of $G$, respectively. The largest eigenvalue of $A_{\\alpha}(G)$ is called the $A_\\alpha$-index of $G.$ The famous Erdős-Sós conjecture states that every $n$-vertex graph with more than $\\frac{1}{2}(k-1)n$ edges must contain every tree on $k+1$ vertices. In this paper, we consider an $A_\\alpha$-spectral version of this conjecture. For $n>k,$ let $S_{n,k}$ be the join of a clique on $k$ vertices with an independent set of $n-k$ vertices and denote by $S^+_{n,k}$ the graph obtained from $S_{n,k}$ by adding one edge. We show that for fixed $k\\geq2,\\,0<\\alpha<1$ and $n\\geq\\frac{88k^2(k+1)^2}{\\alpha^4(1-\\alpha)}$, if a graph on $n$ vertices has $A_\\alpha$-index at least as large as $S_{n,k}$ (resp. $S^+_{n,k}$), then it contains all trees on $2k+2$ (resp. $2k+3$) vertices, or it is isomorphic to $S_{n,k}$ (resp. $S^+_{n,k}$). These extend the results of Cioabă, Desai and Tait (2022), in which they confirmed the adjacency spectral version of the Erdős-Sós conjecture.","PeriodicalId":11515,"journal":{"name":"Electronic Journal of Combinatorics","volume":"18 1","pages":"0"},"PeriodicalIF":0.7000,"publicationDate":"2023-09-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"An Aα-Spectral Erdős-Sós Theorem\",\"authors\":\"Ming-Zhu Chen, Shuchao Li, Zhao-Ming Li, Yuantian Yu, Xiao-Dong Zhang\",\"doi\":\"10.37236/11593\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Let $G$ be a graph and let $\\\\alpha$ be a real number in $[0,1].$ In 2017, Nikiforov proposed the $A_\\\\alpha$-matrix for $G$ as $A_{\\\\alpha}(G)=\\\\alpha D(G)+(1-\\\\alpha)A(G)$, where $A(G)$ and $D(G)$ are the adjacency matrix and the degree diagonal matrix of $G$, respectively. The largest eigenvalue of $A_{\\\\alpha}(G)$ is called the $A_\\\\alpha$-index of $G.$ The famous Erdős-Sós conjecture states that every $n$-vertex graph with more than $\\\\frac{1}{2}(k-1)n$ edges must contain every tree on $k+1$ vertices. In this paper, we consider an $A_\\\\alpha$-spectral version of this conjecture. For $n>k,$ let $S_{n,k}$ be the join of a clique on $k$ vertices with an independent set of $n-k$ vertices and denote by $S^+_{n,k}$ the graph obtained from $S_{n,k}$ by adding one edge. We show that for fixed $k\\\\geq2,\\\\,0<\\\\alpha<1$ and $n\\\\geq\\\\frac{88k^2(k+1)^2}{\\\\alpha^4(1-\\\\alpha)}$, if a graph on $n$ vertices has $A_\\\\alpha$-index at least as large as $S_{n,k}$ (resp. $S^+_{n,k}$), then it contains all trees on $2k+2$ (resp. $2k+3$) vertices, or it is isomorphic to $S_{n,k}$ (resp. $S^+_{n,k}$). These extend the results of Cioabă, Desai and Tait (2022), in which they confirmed the adjacency spectral version of the Erdős-Sós conjecture.\",\"PeriodicalId\":11515,\"journal\":{\"name\":\"Electronic Journal of Combinatorics\",\"volume\":\"18 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.7000,\"publicationDate\":\"2023-09-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Electronic Journal of Combinatorics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.37236/11593\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Electronic Journal of Combinatorics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.37236/11593","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

让 $G$ 做一个图形,让 $\alpha$ 做一个实数 $[0,1].$ 2017年,尼基福罗夫提出 $A_\alpha$-矩阵 $G$ as $A_{\alpha}(G)=\alpha D(G)+(1-\alpha)A(G)$,其中 $A(G)$ 和 $D(G)$ 邻接矩阵和度对角矩阵是 $G$,分别。的最大特征值 $A_{\alpha}(G)$ 叫做 $A_\alpha$-指数 $G.$ 著名的Erdős-Sós猜想指出每一个 $n$-顶点图与多于 $\frac{1}{2}(k-1)n$ 边必须包含上面的所有树 $k+1$ 顶点。在本文中,我们考虑一个 $A_\alpha$这个猜想的-谱版本。因为 $n>k,$ 让 $S_{n,k}$ 成为小集团的一员 $k$ 具有独立集合的顶点 $n-k$ 顶点,表示为 $S^+_{n,k}$ 由 $S_{n,k}$ 通过添加一条边。我们证明了这是固定的 $k\geq2,\,0<\alpha<1$ 和 $n\geq\frac{88k^2(k+1)^2}{\alpha^4(1-\alpha)}$,如果一个图形上 $n$ 顶点有 $A_\alpha$-索引至少与 $S_{n,k}$ (回答) $S^+_{n,k}$),则包含上的所有树 $2k+2$ (回答) $2k+3$)顶点,或者它同构于 $S_{n,k}$ (回答) $S^+_{n,k}$). 这些结果扩展了cioabei, Desai和Tait(2022)的结果,他们在其中证实了Erdős-Sós猜想的邻接谱版本。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
An Aα-Spectral Erdős-Sós Theorem
Let $G$ be a graph and let $\alpha$ be a real number in $[0,1].$ In 2017, Nikiforov proposed the $A_\alpha$-matrix for $G$ as $A_{\alpha}(G)=\alpha D(G)+(1-\alpha)A(G)$, where $A(G)$ and $D(G)$ are the adjacency matrix and the degree diagonal matrix of $G$, respectively. The largest eigenvalue of $A_{\alpha}(G)$ is called the $A_\alpha$-index of $G.$ The famous Erdős-Sós conjecture states that every $n$-vertex graph with more than $\frac{1}{2}(k-1)n$ edges must contain every tree on $k+1$ vertices. In this paper, we consider an $A_\alpha$-spectral version of this conjecture. For $n>k,$ let $S_{n,k}$ be the join of a clique on $k$ vertices with an independent set of $n-k$ vertices and denote by $S^+_{n,k}$ the graph obtained from $S_{n,k}$ by adding one edge. We show that for fixed $k\geq2,\,0<\alpha<1$ and $n\geq\frac{88k^2(k+1)^2}{\alpha^4(1-\alpha)}$, if a graph on $n$ vertices has $A_\alpha$-index at least as large as $S_{n,k}$ (resp. $S^+_{n,k}$), then it contains all trees on $2k+2$ (resp. $2k+3$) vertices, or it is isomorphic to $S_{n,k}$ (resp. $S^+_{n,k}$). These extend the results of Cioabă, Desai and Tait (2022), in which they confirmed the adjacency spectral version of the Erdős-Sós conjecture.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
1.30
自引率
14.30%
发文量
212
审稿时长
3-6 weeks
期刊介绍: The Electronic Journal of Combinatorics (E-JC) is a fully-refereed electronic journal with very high standards, publishing papers of substantial content and interest in all branches of discrete mathematics, including combinatorics, graph theory, and algorithms for combinatorial problems.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信