利用硬币模型的平面图的边界广义着色数

IF 0.7 4区 数学 Q2 MATHEMATICS
Jesper Nederlof, Michał Pilipczuk, Karol Węgrzycki
{"title":"利用硬币模型的平面图的边界广义着色数","authors":"Jesper Nederlof, Michał Pilipczuk, Karol Węgrzycki","doi":"10.37236/11095","DOIUrl":null,"url":null,"abstract":"We study Koebe orderings of planar graphs: vertex orderings obtained by modelling the graph as the intersection graph of pairwise internally-disjoint discs in the plane, and ordering the vertices by non-increasing radii of the associated discs. We prove that for every $d\\in \\mathbb{N}$, any such ordering has $d$-admissibility bounded by $O(d/\\ln d)$ and weak $d$-coloring number bounded by $O(d^4 \\ln d)$. This in particular shows that the $d$-admissibility of planar graphs is bounded by $O(d/\\ln d)$, which asymptotically matches a known lower bound due to Dvořák and Siebertz.","PeriodicalId":11515,"journal":{"name":"Electronic Journal of Combinatorics","volume":"81 1","pages":"0"},"PeriodicalIF":0.7000,"publicationDate":"2023-09-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Bounding Generalized Coloring Numbers of Planar Graphs Using Coin Models\",\"authors\":\"Jesper Nederlof, Michał Pilipczuk, Karol Węgrzycki\",\"doi\":\"10.37236/11095\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We study Koebe orderings of planar graphs: vertex orderings obtained by modelling the graph as the intersection graph of pairwise internally-disjoint discs in the plane, and ordering the vertices by non-increasing radii of the associated discs. We prove that for every $d\\\\in \\\\mathbb{N}$, any such ordering has $d$-admissibility bounded by $O(d/\\\\ln d)$ and weak $d$-coloring number bounded by $O(d^4 \\\\ln d)$. This in particular shows that the $d$-admissibility of planar graphs is bounded by $O(d/\\\\ln d)$, which asymptotically matches a known lower bound due to Dvořák and Siebertz.\",\"PeriodicalId\":11515,\"journal\":{\"name\":\"Electronic Journal of Combinatorics\",\"volume\":\"81 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.7000,\"publicationDate\":\"2023-09-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Electronic Journal of Combinatorics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.37236/11095\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Electronic Journal of Combinatorics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.37236/11095","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 1

摘要

我们研究了平面图的Koebe排序:通过将图建模为平面上两两内不相交圆盘的相交图而得到顶点排序,并通过关联圆盘的不增加半径对顶点排序。我们证明了对于\mathbb{N}$中的每一个$d\,任何这样的排序都具有$d$-可容许性以$O(d/\ln d)$为界和$d$-弱着色数以$O(d^4 \ln d)$为界。这特别表明了平面图的$d$-可容许性以$O(d/\ln d)$为界,它渐近地与Dvořák和Siebertz给出的已知下界相匹配。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Bounding Generalized Coloring Numbers of Planar Graphs Using Coin Models
We study Koebe orderings of planar graphs: vertex orderings obtained by modelling the graph as the intersection graph of pairwise internally-disjoint discs in the plane, and ordering the vertices by non-increasing radii of the associated discs. We prove that for every $d\in \mathbb{N}$, any such ordering has $d$-admissibility bounded by $O(d/\ln d)$ and weak $d$-coloring number bounded by $O(d^4 \ln d)$. This in particular shows that the $d$-admissibility of planar graphs is bounded by $O(d/\ln d)$, which asymptotically matches a known lower bound due to Dvořák and Siebertz.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
1.30
自引率
14.30%
发文量
212
审稿时长
3-6 weeks
期刊介绍: The Electronic Journal of Combinatorics (E-JC) is a fully-refereed electronic journal with very high standards, publishing papers of substantial content and interest in all branches of discrete mathematics, including combinatorics, graph theory, and algorithms for combinatorial problems.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信