{"title":"在随机平面图中切割顶点","authors":"Michael Drmota, Marc Noy, Benedikt Stufler","doi":"10.37236/11163","DOIUrl":null,"url":null,"abstract":"The main goal of this paper is to determine the asymptotic behavior of the number $X_n$ of cut-vertices in random planar maps with $n$ edges. It is shown that $X_n/n \\to c$ in probability (for some explicit $c>0$). For so-called subcritical classes of planar maps (like outerplanar maps) we obtain a central limit theorem, too. Interestingly the combinatorics behind this seemingly simple problem is quite involved.","PeriodicalId":11515,"journal":{"name":"Electronic Journal of Combinatorics","volume":"74 1","pages":"0"},"PeriodicalIF":0.7000,"publicationDate":"2023-09-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Cut Vertices in Random Planar Maps\",\"authors\":\"Michael Drmota, Marc Noy, Benedikt Stufler\",\"doi\":\"10.37236/11163\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The main goal of this paper is to determine the asymptotic behavior of the number $X_n$ of cut-vertices in random planar maps with $n$ edges. It is shown that $X_n/n \\\\to c$ in probability (for some explicit $c>0$). For so-called subcritical classes of planar maps (like outerplanar maps) we obtain a central limit theorem, too. Interestingly the combinatorics behind this seemingly simple problem is quite involved.\",\"PeriodicalId\":11515,\"journal\":{\"name\":\"Electronic Journal of Combinatorics\",\"volume\":\"74 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.7000,\"publicationDate\":\"2023-09-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Electronic Journal of Combinatorics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.37236/11163\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Electronic Journal of Combinatorics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.37236/11163","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
The main goal of this paper is to determine the asymptotic behavior of the number $X_n$ of cut-vertices in random planar maps with $n$ edges. It is shown that $X_n/n \to c$ in probability (for some explicit $c>0$). For so-called subcritical classes of planar maps (like outerplanar maps) we obtain a central limit theorem, too. Interestingly the combinatorics behind this seemingly simple problem is quite involved.
期刊介绍:
The Electronic Journal of Combinatorics (E-JC) is a fully-refereed electronic journal with very high standards, publishing papers of substantial content and interest in all branches of discrete mathematics, including combinatorics, graph theory, and algorithms for combinatorial problems.