在随机平面图中切割顶点

IF 0.7 4区 数学 Q2 MATHEMATICS
Michael Drmota, Marc Noy, Benedikt Stufler
{"title":"在随机平面图中切割顶点","authors":"Michael Drmota, Marc Noy, Benedikt Stufler","doi":"10.37236/11163","DOIUrl":null,"url":null,"abstract":"The main goal of this paper is to determine the asymptotic behavior of the number $X_n$ of cut-vertices in random planar maps with $n$ edges. It is shown that $X_n/n \\to c$ in probability (for some explicit $c>0$). For so-called subcritical classes of planar maps (like outerplanar maps) we obtain a central limit theorem, too. Interestingly the combinatorics behind this seemingly simple problem is quite involved.","PeriodicalId":11515,"journal":{"name":"Electronic Journal of Combinatorics","volume":"74 1","pages":"0"},"PeriodicalIF":0.7000,"publicationDate":"2023-09-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Cut Vertices in Random Planar Maps\",\"authors\":\"Michael Drmota, Marc Noy, Benedikt Stufler\",\"doi\":\"10.37236/11163\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The main goal of this paper is to determine the asymptotic behavior of the number $X_n$ of cut-vertices in random planar maps with $n$ edges. It is shown that $X_n/n \\\\to c$ in probability (for some explicit $c>0$). For so-called subcritical classes of planar maps (like outerplanar maps) we obtain a central limit theorem, too. Interestingly the combinatorics behind this seemingly simple problem is quite involved.\",\"PeriodicalId\":11515,\"journal\":{\"name\":\"Electronic Journal of Combinatorics\",\"volume\":\"74 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.7000,\"publicationDate\":\"2023-09-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Electronic Journal of Combinatorics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.37236/11163\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Electronic Journal of Combinatorics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.37236/11163","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

本文的主要目的是确定具有$n$条边的随机平面映射中切割顶点数目$X_n$的渐近行为。它显示了$X_n/n \到c$的概率(对于一些显式的$c>0$)。对于所谓的次临界类的平面映射(如外平面映射),我们也得到了一个中心极限定理。有趣的是,这个看似简单的问题背后的组合学是相当复杂的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Cut Vertices in Random Planar Maps
The main goal of this paper is to determine the asymptotic behavior of the number $X_n$ of cut-vertices in random planar maps with $n$ edges. It is shown that $X_n/n \to c$ in probability (for some explicit $c>0$). For so-called subcritical classes of planar maps (like outerplanar maps) we obtain a central limit theorem, too. Interestingly the combinatorics behind this seemingly simple problem is quite involved.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
1.30
自引率
14.30%
发文量
212
审稿时长
3-6 weeks
期刊介绍: The Electronic Journal of Combinatorics (E-JC) is a fully-refereed electronic journal with very high standards, publishing papers of substantial content and interest in all branches of discrete mathematics, including combinatorics, graph theory, and algorithms for combinatorial problems.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信