机械编程的各向异性工程肌肉与驱动细胞外基质

Brandon Rios, Angel Bu, Tara Sheehan, Hiba Kobeissi, Sonika Kohli, Karina Shah, Emma Lejeune, Ritu Raman
{"title":"机械编程的各向异性工程肌肉与驱动细胞外基质","authors":"Brandon Rios, Angel Bu, Tara Sheehan, Hiba Kobeissi, Sonika Kohli, Karina Shah, Emma Lejeune, Ritu Raman","doi":"10.1016/j.device.2023.100097","DOIUrl":null,"url":null,"abstract":"The hierarchical design and adaptive functionalities of biological tissues are driven by dynamic biochemical, electrical, and mechanical signaling between cells and their extracellular matrices. While existing tools enable monitoring and controlling biochemical and electrical signaling in multicellular systems, there is a significant need for techniques that enable mapping and modulating intercellular mechanical signaling. We have developed a magnetically actuated extracellular matrix that serves as a mechanically active substrate for cells and can program morphological and functional anisotropy in tissues such as skeletal muscle. This method improves the ease and efficiency of programming muscle force directionality and synchronicity for applications ranging from medicine to robotics. Additionally, we present an open-source computational framework enabling quantitative analyses of muscle contractility. Our actuating matrices and accompanying tools are broadly applicable across cell types and hydrogel chemistries, and they can drive fundamental studies in mechanobiology as well as translational applications of engineered tissues in medicine and machines.","PeriodicalId":101324,"journal":{"name":"Device","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"Mechanically programming anisotropy in engineered muscle with actuating extracellular matrices\",\"authors\":\"Brandon Rios, Angel Bu, Tara Sheehan, Hiba Kobeissi, Sonika Kohli, Karina Shah, Emma Lejeune, Ritu Raman\",\"doi\":\"10.1016/j.device.2023.100097\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The hierarchical design and adaptive functionalities of biological tissues are driven by dynamic biochemical, electrical, and mechanical signaling between cells and their extracellular matrices. While existing tools enable monitoring and controlling biochemical and electrical signaling in multicellular systems, there is a significant need for techniques that enable mapping and modulating intercellular mechanical signaling. We have developed a magnetically actuated extracellular matrix that serves as a mechanically active substrate for cells and can program morphological and functional anisotropy in tissues such as skeletal muscle. This method improves the ease and efficiency of programming muscle force directionality and synchronicity for applications ranging from medicine to robotics. Additionally, we present an open-source computational framework enabling quantitative analyses of muscle contractility. Our actuating matrices and accompanying tools are broadly applicable across cell types and hydrogel chemistries, and they can drive fundamental studies in mechanobiology as well as translational applications of engineered tissues in medicine and machines.\",\"PeriodicalId\":101324,\"journal\":{\"name\":\"Device\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-10-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Device\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1016/j.device.2023.100097\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Device","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1016/j.device.2023.100097","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

摘要

生物组织的分层设计和自适应功能是由细胞及其细胞外基质之间的动态生化、电和机械信号驱动的。虽然现有的工具能够监测和控制多细胞系统中的生化和电信号,但仍然需要能够绘制和调节细胞间机械信号的技术。我们已经开发了一种磁驱动的细胞外基质,作为细胞的机械活性基质,可以编程组织(如骨骼肌)的形态和功能各向异性。该方法提高了从医学到机器人等应用程序编程肌肉力量方向性和同步性的便利性和效率。此外,我们提出了一个开源的计算框架,可以定量分析肌肉收缩性。我们的驱动基质和配套工具广泛适用于各种细胞类型和水凝胶化学,它们可以推动机械生物学的基础研究以及工程组织在医学和机器中的转化应用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Mechanically programming anisotropy in engineered muscle with actuating extracellular matrices
The hierarchical design and adaptive functionalities of biological tissues are driven by dynamic biochemical, electrical, and mechanical signaling between cells and their extracellular matrices. While existing tools enable monitoring and controlling biochemical and electrical signaling in multicellular systems, there is a significant need for techniques that enable mapping and modulating intercellular mechanical signaling. We have developed a magnetically actuated extracellular matrix that serves as a mechanically active substrate for cells and can program morphological and functional anisotropy in tissues such as skeletal muscle. This method improves the ease and efficiency of programming muscle force directionality and synchronicity for applications ranging from medicine to robotics. Additionally, we present an open-source computational framework enabling quantitative analyses of muscle contractility. Our actuating matrices and accompanying tools are broadly applicable across cell types and hydrogel chemistries, and they can drive fundamental studies in mechanobiology as well as translational applications of engineered tissues in medicine and machines.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
0.70
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信