{"title":"l函数的统一界","authors":"Bingrong Huang","doi":"10.1017/s1474748023000348","DOIUrl":null,"url":null,"abstract":"Abstract In this paper, we prove uniform bounds for $\\operatorname {GL}(3)\\times \\operatorname {GL}(2) \\ L$ -functions in the $\\operatorname {GL}(2)$ spectral aspect and the t aspect by a delta method. More precisely, let $\\phi $ be a Hecke–Maass cusp form for $\\operatorname {SL}(3,\\mathbb {Z})$ and f a Hecke–Maass cusp form for $\\operatorname {SL}(2,\\mathbb {Z})$ with the spectral parameter $t_f$ . Then for $t\\in \\mathbb {R}$ and any $\\varepsilon>0$ , we have $$\\begin{align*}L(1/2+it,\\phi\\times f) \\ll_{\\phi,\\varepsilon} (t_f+|t|)^{27/20+\\varepsilon}. \\end{align*}$$ Moreover, we get subconvexity bounds for $L(1/2+it,\\phi \\times f)$ whenever $|t|-t_f \\gg (|t|+t_f)^{3/5+\\varepsilon }$ .","PeriodicalId":50002,"journal":{"name":"Journal of the Institute of Mathematics of Jussieu","volume":"145 1","pages":"0"},"PeriodicalIF":1.1000,"publicationDate":"2023-10-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"UNIFORM BOUNDS FOR <i>L</i>-FUNCTIONS\",\"authors\":\"Bingrong Huang\",\"doi\":\"10.1017/s1474748023000348\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract In this paper, we prove uniform bounds for $\\\\operatorname {GL}(3)\\\\times \\\\operatorname {GL}(2) \\\\ L$ -functions in the $\\\\operatorname {GL}(2)$ spectral aspect and the t aspect by a delta method. More precisely, let $\\\\phi $ be a Hecke–Maass cusp form for $\\\\operatorname {SL}(3,\\\\mathbb {Z})$ and f a Hecke–Maass cusp form for $\\\\operatorname {SL}(2,\\\\mathbb {Z})$ with the spectral parameter $t_f$ . Then for $t\\\\in \\\\mathbb {R}$ and any $\\\\varepsilon>0$ , we have $$\\\\begin{align*}L(1/2+it,\\\\phi\\\\times f) \\\\ll_{\\\\phi,\\\\varepsilon} (t_f+|t|)^{27/20+\\\\varepsilon}. \\\\end{align*}$$ Moreover, we get subconvexity bounds for $L(1/2+it,\\\\phi \\\\times f)$ whenever $|t|-t_f \\\\gg (|t|+t_f)^{3/5+\\\\varepsilon }$ .\",\"PeriodicalId\":50002,\"journal\":{\"name\":\"Journal of the Institute of Mathematics of Jussieu\",\"volume\":\"145 1\",\"pages\":\"0\"},\"PeriodicalIF\":1.1000,\"publicationDate\":\"2023-10-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of the Institute of Mathematics of Jussieu\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1017/s1474748023000348\",\"RegionNum\":2,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of the Institute of Mathematics of Jussieu","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1017/s1474748023000348","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
Abstract In this paper, we prove uniform bounds for $\operatorname {GL}(3)\times \operatorname {GL}(2) \ L$ -functions in the $\operatorname {GL}(2)$ spectral aspect and the t aspect by a delta method. More precisely, let $\phi $ be a Hecke–Maass cusp form for $\operatorname {SL}(3,\mathbb {Z})$ and f a Hecke–Maass cusp form for $\operatorname {SL}(2,\mathbb {Z})$ with the spectral parameter $t_f$ . Then for $t\in \mathbb {R}$ and any $\varepsilon>0$ , we have $$\begin{align*}L(1/2+it,\phi\times f) \ll_{\phi,\varepsilon} (t_f+|t|)^{27/20+\varepsilon}. \end{align*}$$ Moreover, we get subconvexity bounds for $L(1/2+it,\phi \times f)$ whenever $|t|-t_f \gg (|t|+t_f)^{3/5+\varepsilon }$ .
期刊介绍:
The Journal of the Institute of Mathematics of Jussieu publishes original research papers in any branch of pure mathematics; papers in logic and applied mathematics will also be considered, particularly when they have direct connections with pure mathematics. Its policy is to feature a wide variety of research areas and it welcomes the submission of papers from all parts of the world. Selection for publication is on the basis of reports from specialist referees commissioned by the Editors.