{"title":"基于图像分类和语义分割的Pet稳健心脏肥大诊断","authors":"Jun-Young Oh, In-Gyu Lee, Young-Min Go, Euijong Lee, Ji-Hoon Jeong","doi":"10.14801/jkiit.2023.21.8.143","DOIUrl":null,"url":null,"abstract":"애완동물 건강에 대한 세계적인 관심이 높아지면서 이 분야에서 AI의 중요성이 커졌다. 하지만 수의학 인공지능은 인간 의학 AI만큼 광범위하게 연구되지 않았다. 따라서, 우리는 AI를 애완동물 건강 관리에 적용했고, 특히 컴퓨터 비전을 이용한 진단 흐름을 제시하였다. 진단 흐름은 데이터 수집, 데이터 전처리, 객체 감지 및 분류, 영상 분할로 구성된다. 분류를 위해 X선 영상에서 심장을 감지하고 정상 또는 비정상으로 분류하기 위해 YOLOv5를 사용하였다. 이후 비정상으로 분류된 경우 영상 분할은 좌심방 확대 정도를 시각적으로 보여준다. 분류 정확도는 정상 클래스의 경우 0.8800, 비정상 클래스의 경우 0.8933을 달성하여 전체 분류 정확도는 0.8866이다. 추가 분류 메트릭에는 f1 점수 0.8864 및 AUC 점수 0.8866이 포함된다. 영상 분할 성능은 주사위점수를 사용하여 평가되었으며 평균 0.9026의 성능을 달성하였다.","PeriodicalId":498669,"journal":{"name":"Journal of Korean Institute of Information Technology","volume":"31 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-08-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Leveraging Image Classification and Semantic Segmentation for Robust Cardiomegaly Diagnosis in Pet\",\"authors\":\"Jun-Young Oh, In-Gyu Lee, Young-Min Go, Euijong Lee, Ji-Hoon Jeong\",\"doi\":\"10.14801/jkiit.2023.21.8.143\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"애완동물 건강에 대한 세계적인 관심이 높아지면서 이 분야에서 AI의 중요성이 커졌다. 하지만 수의학 인공지능은 인간 의학 AI만큼 광범위하게 연구되지 않았다. 따라서, 우리는 AI를 애완동물 건강 관리에 적용했고, 특히 컴퓨터 비전을 이용한 진단 흐름을 제시하였다. 진단 흐름은 데이터 수집, 데이터 전처리, 객체 감지 및 분류, 영상 분할로 구성된다. 분류를 위해 X선 영상에서 심장을 감지하고 정상 또는 비정상으로 분류하기 위해 YOLOv5를 사용하였다. 이후 비정상으로 분류된 경우 영상 분할은 좌심방 확대 정도를 시각적으로 보여준다. 분류 정확도는 정상 클래스의 경우 0.8800, 비정상 클래스의 경우 0.8933을 달성하여 전체 분류 정확도는 0.8866이다. 추가 분류 메트릭에는 f1 점수 0.8864 및 AUC 점수 0.8866이 포함된다. 영상 분할 성능은 주사위점수를 사용하여 평가되었으며 평균 0.9026의 성능을 달성하였다.\",\"PeriodicalId\":498669,\"journal\":{\"name\":\"Journal of Korean Institute of Information Technology\",\"volume\":\"31 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-08-31\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Korean Institute of Information Technology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.14801/jkiit.2023.21.8.143\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Korean Institute of Information Technology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.14801/jkiit.2023.21.8.143","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Leveraging Image Classification and Semantic Segmentation for Robust Cardiomegaly Diagnosis in Pet
애완동물 건강에 대한 세계적인 관심이 높아지면서 이 분야에서 AI의 중요성이 커졌다. 하지만 수의학 인공지능은 인간 의학 AI만큼 광범위하게 연구되지 않았다. 따라서, 우리는 AI를 애완동물 건강 관리에 적용했고, 특히 컴퓨터 비전을 이용한 진단 흐름을 제시하였다. 진단 흐름은 데이터 수집, 데이터 전처리, 객체 감지 및 분류, 영상 분할로 구성된다. 분류를 위해 X선 영상에서 심장을 감지하고 정상 또는 비정상으로 분류하기 위해 YOLOv5를 사용하였다. 이후 비정상으로 분류된 경우 영상 분할은 좌심방 확대 정도를 시각적으로 보여준다. 분류 정확도는 정상 클래스의 경우 0.8800, 비정상 클래스의 경우 0.8933을 달성하여 전체 분류 정확도는 0.8866이다. 추가 분류 메트릭에는 f1 점수 0.8864 및 AUC 점수 0.8866이 포함된다. 영상 분할 성능은 주사위점수를 사용하여 평가되었으며 평균 0.9026의 성능을 달성하였다.