追踪人工智能和机器学习应用在推进材料发现和生产过程中的演变

None Nwakamma Ninduwezuor-Ehiobu, None Olawe Alaba Tula, None Chibuike Daraojimba, None Kelechi Anthony Ofonagoro, None Oluwaseun Ayo Ogunjobi, None Joachim Osheyor Gidiagba, None Blessed Afeyokalo Egbokhaebho, None Adeyinka Alex Banso
{"title":"追踪人工智能和机器学习应用在推进材料发现和生产过程中的演变","authors":"None Nwakamma Ninduwezuor-Ehiobu, None Olawe Alaba Tula, None Chibuike Daraojimba, None Kelechi Anthony Ofonagoro, None Oluwaseun Ayo Ogunjobi, None Joachim Osheyor Gidiagba, None Blessed Afeyokalo Egbokhaebho, None Adeyinka Alex Banso","doi":"10.51594/estj.v4i3.552","DOIUrl":null,"url":null,"abstract":"This research paper examines the transformative role of artificial intelligence (AI) and machine learning (ML) in advancing materials discovery and production processes. The paper explores the historical evolution of AI and ML techniques, their application in materials science, challenges and limitations, emerging technologies, and ethical considerations. Key findings highlight how AI and ML accelerate materials discovery, optimize production processes, and enhance quality control. Emerging technologies such as generative models, reinforcement learning, and AI integration with experimental techniques are discussed. Ethical considerations encompass data privacy, intellectual property, job displacement, bias mitigation, transparency, and human-AI collaboration. The implications for the future underscore the profound impact of AI and ML on materials science, enabling faster discovery, efficient production, and novel material development.
 Keywords: Artificial Intelligence, Machine Learning, Materials Discovery, Materials Production, Generative Models, Reinforcement Learning, Data Privacy, Ethical Considerations.","PeriodicalId":472482,"journal":{"name":"Engineering science & tecnology journal","volume":"93 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-09-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"TRACING THE EVOLUTION OF AI AND MACHINE LEARNING APPLICATIONS IN ADVANCING MATERIALS DISCOVERY AND PRODUCTION PROCESSES\",\"authors\":\"None Nwakamma Ninduwezuor-Ehiobu, None Olawe Alaba Tula, None Chibuike Daraojimba, None Kelechi Anthony Ofonagoro, None Oluwaseun Ayo Ogunjobi, None Joachim Osheyor Gidiagba, None Blessed Afeyokalo Egbokhaebho, None Adeyinka Alex Banso\",\"doi\":\"10.51594/estj.v4i3.552\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This research paper examines the transformative role of artificial intelligence (AI) and machine learning (ML) in advancing materials discovery and production processes. The paper explores the historical evolution of AI and ML techniques, their application in materials science, challenges and limitations, emerging technologies, and ethical considerations. Key findings highlight how AI and ML accelerate materials discovery, optimize production processes, and enhance quality control. Emerging technologies such as generative models, reinforcement learning, and AI integration with experimental techniques are discussed. Ethical considerations encompass data privacy, intellectual property, job displacement, bias mitigation, transparency, and human-AI collaboration. The implications for the future underscore the profound impact of AI and ML on materials science, enabling faster discovery, efficient production, and novel material development.
 Keywords: Artificial Intelligence, Machine Learning, Materials Discovery, Materials Production, Generative Models, Reinforcement Learning, Data Privacy, Ethical Considerations.\",\"PeriodicalId\":472482,\"journal\":{\"name\":\"Engineering science & tecnology journal\",\"volume\":\"93 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-09-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Engineering science & tecnology journal\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.51594/estj.v4i3.552\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Engineering science & tecnology journal","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.51594/estj.v4i3.552","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

本研究报告探讨了人工智能(AI)和机器学习(ML)在推进材料发现和生产过程中的变革性作用。本文探讨了人工智能和机器学习技术的历史演变,它们在材料科学中的应用,挑战和限制,新兴技术以及伦理考虑。主要发现突出了人工智能和机器学习如何加速材料发现、优化生产流程和加强质量控制。新兴技术,如生成模型,强化学习,人工智能与实验技术的集成进行了讨论。伦理方面的考虑包括数据隐私、知识产权、工作流离失所、减少偏见、透明度和人类与人工智能的协作。对未来的影响强调了人工智能和机器学习对材料科学的深远影响,实现了更快的发现、高效的生产和新材料的开发。 关键词:人工智能,机器学习,材料发现,材料生产,生成模型,强化学习,数据隐私,伦理考虑
本文章由计算机程序翻译,如有差异,请以英文原文为准。
TRACING THE EVOLUTION OF AI AND MACHINE LEARNING APPLICATIONS IN ADVANCING MATERIALS DISCOVERY AND PRODUCTION PROCESSES
This research paper examines the transformative role of artificial intelligence (AI) and machine learning (ML) in advancing materials discovery and production processes. The paper explores the historical evolution of AI and ML techniques, their application in materials science, challenges and limitations, emerging technologies, and ethical considerations. Key findings highlight how AI and ML accelerate materials discovery, optimize production processes, and enhance quality control. Emerging technologies such as generative models, reinforcement learning, and AI integration with experimental techniques are discussed. Ethical considerations encompass data privacy, intellectual property, job displacement, bias mitigation, transparency, and human-AI collaboration. The implications for the future underscore the profound impact of AI and ML on materials science, enabling faster discovery, efficient production, and novel material development. Keywords: Artificial Intelligence, Machine Learning, Materials Discovery, Materials Production, Generative Models, Reinforcement Learning, Data Privacy, Ethical Considerations.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信