{"title":"多重扰动的RG边界和Cardy变分分析","authors":"Anatoly Konechny","doi":"10.1007/jhep11(2023)004","DOIUrl":null,"url":null,"abstract":"A bstract We consider perturbations of 2D CFTs by multiple relevant operators. The massive phases of such perturbations can be labeled by conformal boundary conditions. Cardy’s variational ansatz approximates the vacuum state of the perturbed theory by a smeared conformal boundary state. In this paper we study the limitations and propose generalisations of this ansatz using both analytic and numerical insights based on TCSA. In particular we analyse the stability of Cardy’s ansatz states with respect to boundary relevant perturbations using bulk-boundary OPE coefficients. We show that certain transitions between the massive phases arise from a pair of boundary RG flows. The RG flows start from the conformal boundary on the transition surface and end on those that lie on the two sides of it. As an example we work out the details of the phase diagram for the Ising field theory and for the tricritical Ising model perturbed by the leading thermal and magnetic fields. For the latter we find a pair of novel transition lines that correspond to pairs of RG flows. Although the mass gap remains finite at the transition lines, several one-point functions change their behaviour. We discuss how these lines fit into the standard phase diagram of the tricritical Ising model. We show that each line extends to a two-dimensional surface ξ σ , c in a three coupling space when we add perturbations by the subleading magnetic field. Close to this surface we locate symmetry breaking critical lines leading to the critical Ising model. Near the critical lines we find first order phase transition lines describing two-phase coexistence regions as predicted in Landau theory. The surface ξ σ , c is determined from the CFT data using Cardy’s ansatz and its properties are checked using TCSA numerics.","PeriodicalId":48906,"journal":{"name":"Journal of High Energy Physics","volume":"154 4","pages":"0"},"PeriodicalIF":5.0000,"publicationDate":"2023-11-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"RG boundaries and Cardy’s variational ansatz for multiple perturbations\",\"authors\":\"Anatoly Konechny\",\"doi\":\"10.1007/jhep11(2023)004\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"A bstract We consider perturbations of 2D CFTs by multiple relevant operators. The massive phases of such perturbations can be labeled by conformal boundary conditions. Cardy’s variational ansatz approximates the vacuum state of the perturbed theory by a smeared conformal boundary state. In this paper we study the limitations and propose generalisations of this ansatz using both analytic and numerical insights based on TCSA. In particular we analyse the stability of Cardy’s ansatz states with respect to boundary relevant perturbations using bulk-boundary OPE coefficients. We show that certain transitions between the massive phases arise from a pair of boundary RG flows. The RG flows start from the conformal boundary on the transition surface and end on those that lie on the two sides of it. As an example we work out the details of the phase diagram for the Ising field theory and for the tricritical Ising model perturbed by the leading thermal and magnetic fields. For the latter we find a pair of novel transition lines that correspond to pairs of RG flows. Although the mass gap remains finite at the transition lines, several one-point functions change their behaviour. We discuss how these lines fit into the standard phase diagram of the tricritical Ising model. We show that each line extends to a two-dimensional surface ξ σ , c in a three coupling space when we add perturbations by the subleading magnetic field. Close to this surface we locate symmetry breaking critical lines leading to the critical Ising model. Near the critical lines we find first order phase transition lines describing two-phase coexistence regions as predicted in Landau theory. The surface ξ σ , c is determined from the CFT data using Cardy’s ansatz and its properties are checked using TCSA numerics.\",\"PeriodicalId\":48906,\"journal\":{\"name\":\"Journal of High Energy Physics\",\"volume\":\"154 4\",\"pages\":\"0\"},\"PeriodicalIF\":5.0000,\"publicationDate\":\"2023-11-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of High Energy Physics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1007/jhep11(2023)004\",\"RegionNum\":1,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"PHYSICS, PARTICLES & FIELDS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of High Energy Physics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1007/jhep11(2023)004","RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PHYSICS, PARTICLES & FIELDS","Score":null,"Total":0}
RG boundaries and Cardy’s variational ansatz for multiple perturbations
A bstract We consider perturbations of 2D CFTs by multiple relevant operators. The massive phases of such perturbations can be labeled by conformal boundary conditions. Cardy’s variational ansatz approximates the vacuum state of the perturbed theory by a smeared conformal boundary state. In this paper we study the limitations and propose generalisations of this ansatz using both analytic and numerical insights based on TCSA. In particular we analyse the stability of Cardy’s ansatz states with respect to boundary relevant perturbations using bulk-boundary OPE coefficients. We show that certain transitions between the massive phases arise from a pair of boundary RG flows. The RG flows start from the conformal boundary on the transition surface and end on those that lie on the two sides of it. As an example we work out the details of the phase diagram for the Ising field theory and for the tricritical Ising model perturbed by the leading thermal and magnetic fields. For the latter we find a pair of novel transition lines that correspond to pairs of RG flows. Although the mass gap remains finite at the transition lines, several one-point functions change their behaviour. We discuss how these lines fit into the standard phase diagram of the tricritical Ising model. We show that each line extends to a two-dimensional surface ξ σ , c in a three coupling space when we add perturbations by the subleading magnetic field. Close to this surface we locate symmetry breaking critical lines leading to the critical Ising model. Near the critical lines we find first order phase transition lines describing two-phase coexistence regions as predicted in Landau theory. The surface ξ σ , c is determined from the CFT data using Cardy’s ansatz and its properties are checked using TCSA numerics.
期刊介绍:
The aim of the Journal of High Energy Physics (JHEP) is to ensure fast and efficient online publication tools to the scientific community, while keeping that community in charge of every aspect of the peer-review and publication process in order to ensure the highest quality standards in the journal.
Consequently, the Advisory and Editorial Boards, composed of distinguished, active scientists in the field, jointly establish with the Scientific Director the journal''s scientific policy and ensure the scientific quality of accepted articles.
JHEP presently encompasses the following areas of theoretical and experimental physics:
Collider Physics
Underground and Large Array Physics
Quantum Field Theory
Gauge Field Theories
Symmetries
String and Brane Theory
General Relativity and Gravitation
Supersymmetry
Mathematical Methods of Physics
Mostly Solvable Models
Astroparticles
Statistical Field Theories
Mostly Weak Interactions
Mostly Strong Interactions
Quantum Field Theory (phenomenology)
Strings and Branes
Phenomenological Aspects of Supersymmetry
Mostly Strong Interactions (phenomenology).