氮诱导自成形铝基复合材料的拉伸性能

IF 3 Q2 MATERIALS SCIENCE, COMPOSITES
Kon-Bae Lee, Kanhu C. Nayak, Cheol-Hwee Shim, Hye-In Lee, Se-Hoon Kim, Hyun-Joo Choi, Jae-Pyoung Ahn
{"title":"氮诱导自成形铝基复合材料的拉伸性能","authors":"Kon-Bae Lee, Kanhu C. Nayak, Cheol-Hwee Shim, Hye-In Lee, Se-Hoon Kim, Hyun-Joo Choi, Jae-Pyoung Ahn","doi":"10.3390/jcs7110457","DOIUrl":null,"url":null,"abstract":"This study compares the tensile properties of commercial aluminum matrix composites (AMCs) with those of AMCs produced via a nitrogen-induced self-forming process. This process is a newly developed AMCs manufacturing process that takes advantage of the price competitiveness and productivity of large-scale products produced via the liquid process. Additionally, this process has the freedom of choice of the reinforcement phase and the homogeneous dispersibility of the powder process. Compared to commercial monolithic 6061 alloys, 6061 aluminum alloy matrix composites exhibit increased Young’s modulus, yield strength, and ultimate tensile strength by 59%, 66%, and 81%, respectively. This study also compares the tensile properties of AMCs with different matrix compositions, including 2009 and 7050 aluminum alloys. The study shows that AMCs produced using the nitride-induced self-forming aluminum composite (NISFAC) process exhibit comparable or superior tensile properties to those obtained using existing commercial powder metallurgy (P/M) processes.","PeriodicalId":15435,"journal":{"name":"Journal of Composites Science","volume":"5 3","pages":"0"},"PeriodicalIF":3.0000,"publicationDate":"2023-11-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Tensile Properties of Aluminum Matrix Composites Produced via a Nitrogen-Induced Self-Forming Process\",\"authors\":\"Kon-Bae Lee, Kanhu C. Nayak, Cheol-Hwee Shim, Hye-In Lee, Se-Hoon Kim, Hyun-Joo Choi, Jae-Pyoung Ahn\",\"doi\":\"10.3390/jcs7110457\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This study compares the tensile properties of commercial aluminum matrix composites (AMCs) with those of AMCs produced via a nitrogen-induced self-forming process. This process is a newly developed AMCs manufacturing process that takes advantage of the price competitiveness and productivity of large-scale products produced via the liquid process. Additionally, this process has the freedom of choice of the reinforcement phase and the homogeneous dispersibility of the powder process. Compared to commercial monolithic 6061 alloys, 6061 aluminum alloy matrix composites exhibit increased Young’s modulus, yield strength, and ultimate tensile strength by 59%, 66%, and 81%, respectively. This study also compares the tensile properties of AMCs with different matrix compositions, including 2009 and 7050 aluminum alloys. The study shows that AMCs produced using the nitride-induced self-forming aluminum composite (NISFAC) process exhibit comparable or superior tensile properties to those obtained using existing commercial powder metallurgy (P/M) processes.\",\"PeriodicalId\":15435,\"journal\":{\"name\":\"Journal of Composites Science\",\"volume\":\"5 3\",\"pages\":\"0\"},\"PeriodicalIF\":3.0000,\"publicationDate\":\"2023-11-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Composites Science\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.3390/jcs7110457\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATERIALS SCIENCE, COMPOSITES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Composites Science","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3390/jcs7110457","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, COMPOSITES","Score":null,"Total":0}
引用次数: 0

摘要

本研究比较了商用铝基复合材料(AMCs)与氮诱导自成形工艺生产的铝基复合材料的拉伸性能。该工艺是利用液体工艺生产的大规模产品的价格竞争力和生产效率而开发的一种新型AMCs制造工艺。此外,该工艺还具有增强相选择自由和粉末工艺分散性均匀的特点。与商用单片6061合金相比,6061铝合金基复合材料的杨氏模量、屈服强度和极限抗拉强度分别提高了59%、66%和81%。本研究还比较了2009铝合金和7050铝合金不同基体成分的AMCs的拉伸性能。研究表明,使用氮化物诱导自成形铝复合材料(NISFAC)工艺生产的AMCs与使用现有的商业粉末冶金(P/M)工艺获得的AMCs具有相当或更好的拉伸性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Tensile Properties of Aluminum Matrix Composites Produced via a Nitrogen-Induced Self-Forming Process
This study compares the tensile properties of commercial aluminum matrix composites (AMCs) with those of AMCs produced via a nitrogen-induced self-forming process. This process is a newly developed AMCs manufacturing process that takes advantage of the price competitiveness and productivity of large-scale products produced via the liquid process. Additionally, this process has the freedom of choice of the reinforcement phase and the homogeneous dispersibility of the powder process. Compared to commercial monolithic 6061 alloys, 6061 aluminum alloy matrix composites exhibit increased Young’s modulus, yield strength, and ultimate tensile strength by 59%, 66%, and 81%, respectively. This study also compares the tensile properties of AMCs with different matrix compositions, including 2009 and 7050 aluminum alloys. The study shows that AMCs produced using the nitride-induced self-forming aluminum composite (NISFAC) process exhibit comparable or superior tensile properties to those obtained using existing commercial powder metallurgy (P/M) processes.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Composites Science
Journal of Composites Science MATERIALS SCIENCE, COMPOSITES-
CiteScore
5.00
自引率
9.10%
发文量
328
审稿时长
11 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信