Kon-Bae Lee, Kanhu C. Nayak, Cheol-Hwee Shim, Hye-In Lee, Se-Hoon Kim, Hyun-Joo Choi, Jae-Pyoung Ahn
{"title":"氮诱导自成形铝基复合材料的拉伸性能","authors":"Kon-Bae Lee, Kanhu C. Nayak, Cheol-Hwee Shim, Hye-In Lee, Se-Hoon Kim, Hyun-Joo Choi, Jae-Pyoung Ahn","doi":"10.3390/jcs7110457","DOIUrl":null,"url":null,"abstract":"This study compares the tensile properties of commercial aluminum matrix composites (AMCs) with those of AMCs produced via a nitrogen-induced self-forming process. This process is a newly developed AMCs manufacturing process that takes advantage of the price competitiveness and productivity of large-scale products produced via the liquid process. Additionally, this process has the freedom of choice of the reinforcement phase and the homogeneous dispersibility of the powder process. Compared to commercial monolithic 6061 alloys, 6061 aluminum alloy matrix composites exhibit increased Young’s modulus, yield strength, and ultimate tensile strength by 59%, 66%, and 81%, respectively. This study also compares the tensile properties of AMCs with different matrix compositions, including 2009 and 7050 aluminum alloys. The study shows that AMCs produced using the nitride-induced self-forming aluminum composite (NISFAC) process exhibit comparable or superior tensile properties to those obtained using existing commercial powder metallurgy (P/M) processes.","PeriodicalId":15435,"journal":{"name":"Journal of Composites Science","volume":"5 3","pages":"0"},"PeriodicalIF":3.0000,"publicationDate":"2023-11-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Tensile Properties of Aluminum Matrix Composites Produced via a Nitrogen-Induced Self-Forming Process\",\"authors\":\"Kon-Bae Lee, Kanhu C. Nayak, Cheol-Hwee Shim, Hye-In Lee, Se-Hoon Kim, Hyun-Joo Choi, Jae-Pyoung Ahn\",\"doi\":\"10.3390/jcs7110457\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This study compares the tensile properties of commercial aluminum matrix composites (AMCs) with those of AMCs produced via a nitrogen-induced self-forming process. This process is a newly developed AMCs manufacturing process that takes advantage of the price competitiveness and productivity of large-scale products produced via the liquid process. Additionally, this process has the freedom of choice of the reinforcement phase and the homogeneous dispersibility of the powder process. Compared to commercial monolithic 6061 alloys, 6061 aluminum alloy matrix composites exhibit increased Young’s modulus, yield strength, and ultimate tensile strength by 59%, 66%, and 81%, respectively. This study also compares the tensile properties of AMCs with different matrix compositions, including 2009 and 7050 aluminum alloys. The study shows that AMCs produced using the nitride-induced self-forming aluminum composite (NISFAC) process exhibit comparable or superior tensile properties to those obtained using existing commercial powder metallurgy (P/M) processes.\",\"PeriodicalId\":15435,\"journal\":{\"name\":\"Journal of Composites Science\",\"volume\":\"5 3\",\"pages\":\"0\"},\"PeriodicalIF\":3.0000,\"publicationDate\":\"2023-11-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Composites Science\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.3390/jcs7110457\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATERIALS SCIENCE, COMPOSITES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Composites Science","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3390/jcs7110457","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, COMPOSITES","Score":null,"Total":0}
Tensile Properties of Aluminum Matrix Composites Produced via a Nitrogen-Induced Self-Forming Process
This study compares the tensile properties of commercial aluminum matrix composites (AMCs) with those of AMCs produced via a nitrogen-induced self-forming process. This process is a newly developed AMCs manufacturing process that takes advantage of the price competitiveness and productivity of large-scale products produced via the liquid process. Additionally, this process has the freedom of choice of the reinforcement phase and the homogeneous dispersibility of the powder process. Compared to commercial monolithic 6061 alloys, 6061 aluminum alloy matrix composites exhibit increased Young’s modulus, yield strength, and ultimate tensile strength by 59%, 66%, and 81%, respectively. This study also compares the tensile properties of AMCs with different matrix compositions, including 2009 and 7050 aluminum alloys. The study shows that AMCs produced using the nitride-induced self-forming aluminum composite (NISFAC) process exhibit comparable or superior tensile properties to those obtained using existing commercial powder metallurgy (P/M) processes.