Oscar Serrano, Ines Mazarrasa, James W. Fourqurean, Eduard Serrano, Jeffrey Baldock, Jonathan Sanderman
{"title":"海草蓝碳土壤中有机碳分析方法的缺陷","authors":"Oscar Serrano, Ines Mazarrasa, James W. Fourqurean, Eduard Serrano, Jeffrey Baldock, Jonathan Sanderman","doi":"10.1002/lom3.10583","DOIUrl":null,"url":null,"abstract":"The ability to accurately measure organic carbon (OC) in marine sediments or soils is overall taken for granted in scientific communities, yet this seemingly mundane task remains a methodological challenge when the soil matrix contains calcium carbonate (CaCO3), creating inaccuracies in Blue Carbon estimates. Here, we compared five common methods combining acidification, combustion, and wet oxidation pre‐treatments for determination of OC in sediments and soils containing CaCO3 based on the analyses of artificial soil mixtures made of different OC and CaCO3 contents, and multiple soils from Australian seagrass cores. The results obtained showed that methods involving acidification pre‐treatment entailed −17 ± 0.2% (mean ± SE) underestimation of OC content (ranging from −8% to −26%), whereas the combustion‐based method was accurate for samples with high CaCO3 content but entailed 32–47% overestimation in samples with low CaCO3 content. The Heanes method (wet oxidation method) showed <5% deviation from the known OC content, but this method is not suitable for soil samples containing reduced iron, sulfur and potentially manganese compounds. The differences observed among methods have significant impacts on local, regional, and global Blue Carbon storage calculations. We provide key methodological guidelines for the analysis of OC in soils with high and low CaCO3 contents, aiming at improving accuracy in current Blue Carbon science.","PeriodicalId":18145,"journal":{"name":"Limnology and Oceanography: Methods","volume":"21 12","pages":"814-827"},"PeriodicalIF":2.1000,"publicationDate":"2023-11-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://aslopubs.onlinelibrary.wiley.com/doi/epdf/10.1002/lom3.10583","citationCount":"0","resultStr":"{\"title\":\"Flaws in the methodologies for organic carbon analysis in seagrass blue carbon soils\",\"authors\":\"Oscar Serrano, Ines Mazarrasa, James W. Fourqurean, Eduard Serrano, Jeffrey Baldock, Jonathan Sanderman\",\"doi\":\"10.1002/lom3.10583\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The ability to accurately measure organic carbon (OC) in marine sediments or soils is overall taken for granted in scientific communities, yet this seemingly mundane task remains a methodological challenge when the soil matrix contains calcium carbonate (CaCO3), creating inaccuracies in Blue Carbon estimates. Here, we compared five common methods combining acidification, combustion, and wet oxidation pre‐treatments for determination of OC in sediments and soils containing CaCO3 based on the analyses of artificial soil mixtures made of different OC and CaCO3 contents, and multiple soils from Australian seagrass cores. The results obtained showed that methods involving acidification pre‐treatment entailed −17 ± 0.2% (mean ± SE) underestimation of OC content (ranging from −8% to −26%), whereas the combustion‐based method was accurate for samples with high CaCO3 content but entailed 32–47% overestimation in samples with low CaCO3 content. The Heanes method (wet oxidation method) showed <5% deviation from the known OC content, but this method is not suitable for soil samples containing reduced iron, sulfur and potentially manganese compounds. The differences observed among methods have significant impacts on local, regional, and global Blue Carbon storage calculations. We provide key methodological guidelines for the analysis of OC in soils with high and low CaCO3 contents, aiming at improving accuracy in current Blue Carbon science.\",\"PeriodicalId\":18145,\"journal\":{\"name\":\"Limnology and Oceanography: Methods\",\"volume\":\"21 12\",\"pages\":\"814-827\"},\"PeriodicalIF\":2.1000,\"publicationDate\":\"2023-11-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://aslopubs.onlinelibrary.wiley.com/doi/epdf/10.1002/lom3.10583\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Limnology and Oceanography: Methods\",\"FirstCategoryId\":\"89\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/lom3.10583\",\"RegionNum\":3,\"RegionCategory\":\"地球科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"LIMNOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Limnology and Oceanography: Methods","FirstCategoryId":"89","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/lom3.10583","RegionNum":3,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"LIMNOLOGY","Score":null,"Total":0}
Flaws in the methodologies for organic carbon analysis in seagrass blue carbon soils
The ability to accurately measure organic carbon (OC) in marine sediments or soils is overall taken for granted in scientific communities, yet this seemingly mundane task remains a methodological challenge when the soil matrix contains calcium carbonate (CaCO3), creating inaccuracies in Blue Carbon estimates. Here, we compared five common methods combining acidification, combustion, and wet oxidation pre‐treatments for determination of OC in sediments and soils containing CaCO3 based on the analyses of artificial soil mixtures made of different OC and CaCO3 contents, and multiple soils from Australian seagrass cores. The results obtained showed that methods involving acidification pre‐treatment entailed −17 ± 0.2% (mean ± SE) underestimation of OC content (ranging from −8% to −26%), whereas the combustion‐based method was accurate for samples with high CaCO3 content but entailed 32–47% overestimation in samples with low CaCO3 content. The Heanes method (wet oxidation method) showed <5% deviation from the known OC content, but this method is not suitable for soil samples containing reduced iron, sulfur and potentially manganese compounds. The differences observed among methods have significant impacts on local, regional, and global Blue Carbon storage calculations. We provide key methodological guidelines for the analysis of OC in soils with high and low CaCO3 contents, aiming at improving accuracy in current Blue Carbon science.
期刊介绍:
Limnology and Oceanography: Methods (ISSN 1541-5856) is a companion to ASLO''s top-rated journal Limnology and Oceanography, and articles are held to the same high standards. In order to provide the most rapid publication consistent with high standards, Limnology and Oceanography: Methods appears in electronic format only, and the entire submission and review system is online. Articles are posted as soon as they are accepted and formatted for publication.
Limnology and Oceanography: Methods will consider manuscripts whose primary focus is methodological, and that deal with problems in the aquatic sciences. Manuscripts may present new measurement equipment, techniques for analyzing observations or samples, methods for understanding and interpreting information, analyses of metadata to examine the effectiveness of approaches, invited and contributed reviews and syntheses, and techniques for communicating and teaching in the aquatic sciences.