芯片上两个独立分子散射的干扰

IF 8.4 1区 物理与天体物理 Q1 OPTICS
Optica Pub Date : 2023-11-02 DOI:10.1364/optica.502221
Dominik Rattenbacher, Alexey Shkarin, Vahid Sandoghdar, Tobias Utikal, Jan Renger, Stephan Götzinger
{"title":"芯片上两个独立分子散射的干扰","authors":"Dominik Rattenbacher, Alexey Shkarin, Vahid Sandoghdar, Tobias Utikal, Jan Renger, Stephan Götzinger","doi":"10.1364/optica.502221","DOIUrl":null,"url":null,"abstract":"Integrated photonic circuits offer a promising route for studying coherent cooperative effects of a controlled collection of quantum emitters. However, spectral inhomogeneities, decoherence and material incompatibilities in the solid state make this a nontrivial task. Here, we demonstrate efficient coupling of a pair of organic molecules embedded in a plastic film to a TiO$_2$ microdisc resonator on a glass chip. Moreover, we tune the resonance frequencies of the molecules with respect to that of the microresonator by employing nanofabricated electrodes. For two molecules separated by a distance of about 8$\\,\\mu$m and an optical phase difference of about $\\pi/2$, we report on a large collective extinction of the incident light in the forward direction and the destructive interference of its scattering in the backward direction. Our work sets the ground for the coherent coupling of several molecules via a common mode and the realization of polymer-based hybrid quantum photonic circuits.","PeriodicalId":19515,"journal":{"name":"Optica","volume":"8 8","pages":"0"},"PeriodicalIF":8.4000,"publicationDate":"2023-11-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"On-chip interference of scattering from two individual molecules\",\"authors\":\"Dominik Rattenbacher, Alexey Shkarin, Vahid Sandoghdar, Tobias Utikal, Jan Renger, Stephan Götzinger\",\"doi\":\"10.1364/optica.502221\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Integrated photonic circuits offer a promising route for studying coherent cooperative effects of a controlled collection of quantum emitters. However, spectral inhomogeneities, decoherence and material incompatibilities in the solid state make this a nontrivial task. Here, we demonstrate efficient coupling of a pair of organic molecules embedded in a plastic film to a TiO$_2$ microdisc resonator on a glass chip. Moreover, we tune the resonance frequencies of the molecules with respect to that of the microresonator by employing nanofabricated electrodes. For two molecules separated by a distance of about 8$\\\\,\\\\mu$m and an optical phase difference of about $\\\\pi/2$, we report on a large collective extinction of the incident light in the forward direction and the destructive interference of its scattering in the backward direction. Our work sets the ground for the coherent coupling of several molecules via a common mode and the realization of polymer-based hybrid quantum photonic circuits.\",\"PeriodicalId\":19515,\"journal\":{\"name\":\"Optica\",\"volume\":\"8 8\",\"pages\":\"0\"},\"PeriodicalIF\":8.4000,\"publicationDate\":\"2023-11-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Optica\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1364/optica.502221\",\"RegionNum\":1,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"OPTICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Optica","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1364/optica.502221","RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"OPTICS","Score":null,"Total":0}
引用次数: 0

摘要

本文章由计算机程序翻译,如有差异,请以英文原文为准。
On-chip interference of scattering from two individual molecules
Integrated photonic circuits offer a promising route for studying coherent cooperative effects of a controlled collection of quantum emitters. However, spectral inhomogeneities, decoherence and material incompatibilities in the solid state make this a nontrivial task. Here, we demonstrate efficient coupling of a pair of organic molecules embedded in a plastic film to a TiO$_2$ microdisc resonator on a glass chip. Moreover, we tune the resonance frequencies of the molecules with respect to that of the microresonator by employing nanofabricated electrodes. For two molecules separated by a distance of about 8$\,\mu$m and an optical phase difference of about $\pi/2$, we report on a large collective extinction of the incident light in the forward direction and the destructive interference of its scattering in the backward direction. Our work sets the ground for the coherent coupling of several molecules via a common mode and the realization of polymer-based hybrid quantum photonic circuits.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Optica
Optica OPTICS-
CiteScore
19.70
自引率
2.90%
发文量
191
审稿时长
2 months
期刊介绍: Optica is an open access, online-only journal published monthly by Optica Publishing Group. It is dedicated to the rapid dissemination of high-impact peer-reviewed research in the field of optics and photonics. The journal provides a forum for theoretical or experimental, fundamental or applied research to be swiftly accessed by the international community. Optica is abstracted and indexed in Chemical Abstracts Service, Current Contents/Physical, Chemical & Earth Sciences, and Science Citation Index Expanded.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信