一种增强的边缘层轻量级安全网关协议

Md Masum Reza, Jairo Gutierrez
{"title":"一种增强的边缘层轻量级安全网关协议","authors":"Md Masum Reza, Jairo Gutierrez","doi":"10.3390/technologies11050140","DOIUrl":null,"url":null,"abstract":"With the rapid expansion of the Internet of Things (IoT), the necessity for lightweight communication is also increasing due to the constrained capabilities of IoT devices. This paper presents the design of a novel lightweight protocol called the Enhanced Lightweight Security Gateway Protocol (ELSGP) based on a distributed computation model of the IoT layer. This model introduces a new type of node called a sub-server to assist edge layer servers and IoT devices with computational tasks and act as a primary gateway for dependent IoT nodes. This paper then introduces six features of ELSGP with developed algorithms that include access token distribution and validation, authentication and dynamic interoperability, attribute-based access control, traffic filtering, secure tunneling, and dynamic load distribution and balancing. Considering the variability of system requirements, ELSGP also outlines how to adopt a system-defined policy framework. For fault resiliency, this paper also presents fault mitigation mechanisms, especially Trust and Priority Impact Relation for Byzantine, Cascading, and Transient faults. A simulation study was carried out to validate the protocol’s performance. Based on the findings from the performance evaluation, further analysis of the protocol and future research directions are outlined.","PeriodicalId":472933,"journal":{"name":"Technologies (Basel)","volume":"28 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-10-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"An Enhanced Lightweight Security Gateway Protocol for the Edge Layer\",\"authors\":\"Md Masum Reza, Jairo Gutierrez\",\"doi\":\"10.3390/technologies11050140\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"With the rapid expansion of the Internet of Things (IoT), the necessity for lightweight communication is also increasing due to the constrained capabilities of IoT devices. This paper presents the design of a novel lightweight protocol called the Enhanced Lightweight Security Gateway Protocol (ELSGP) based on a distributed computation model of the IoT layer. This model introduces a new type of node called a sub-server to assist edge layer servers and IoT devices with computational tasks and act as a primary gateway for dependent IoT nodes. This paper then introduces six features of ELSGP with developed algorithms that include access token distribution and validation, authentication and dynamic interoperability, attribute-based access control, traffic filtering, secure tunneling, and dynamic load distribution and balancing. Considering the variability of system requirements, ELSGP also outlines how to adopt a system-defined policy framework. For fault resiliency, this paper also presents fault mitigation mechanisms, especially Trust and Priority Impact Relation for Byzantine, Cascading, and Transient faults. A simulation study was carried out to validate the protocol’s performance. Based on the findings from the performance evaluation, further analysis of the protocol and future research directions are outlined.\",\"PeriodicalId\":472933,\"journal\":{\"name\":\"Technologies (Basel)\",\"volume\":\"28 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-10-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Technologies (Basel)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.3390/technologies11050140\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Technologies (Basel)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3390/technologies11050140","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

随着物联网(IoT)的快速发展,由于物联网设备的能力有限,轻量级通信的必要性也在增加。本文提出了一种基于物联网层分布式计算模型的新型轻量级协议——增强型轻量级安全网关协议(Enhanced lightweight Security Gateway protocol, ELSGP)。该模型引入了一种称为子服务器的新型节点,以协助边缘层服务器和物联网设备完成计算任务,并充当依赖物联网节点的主网关。然后介绍了ELSGP的六个特性和开发的算法,包括访问令牌分发和验证、身份验证和动态互操作性、基于属性的访问控制、流量过滤、安全隧道和动态负载分配和平衡。考虑到系统需求的可变性,ELSGP还概述了如何采用系统定义的策略框架。对于故障恢复,本文还提出了故障缓解机制,特别是拜占庭式、级联式和瞬态故障的信任和优先级影响关系。通过仿真研究验证了该协议的性能。在此基础上,对方案进行了进一步分析,并提出了未来的研究方向。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
An Enhanced Lightweight Security Gateway Protocol for the Edge Layer
With the rapid expansion of the Internet of Things (IoT), the necessity for lightweight communication is also increasing due to the constrained capabilities of IoT devices. This paper presents the design of a novel lightweight protocol called the Enhanced Lightweight Security Gateway Protocol (ELSGP) based on a distributed computation model of the IoT layer. This model introduces a new type of node called a sub-server to assist edge layer servers and IoT devices with computational tasks and act as a primary gateway for dependent IoT nodes. This paper then introduces six features of ELSGP with developed algorithms that include access token distribution and validation, authentication and dynamic interoperability, attribute-based access control, traffic filtering, secure tunneling, and dynamic load distribution and balancing. Considering the variability of system requirements, ELSGP also outlines how to adopt a system-defined policy framework. For fault resiliency, this paper also presents fault mitigation mechanisms, especially Trust and Priority Impact Relation for Byzantine, Cascading, and Transient faults. A simulation study was carried out to validate the protocol’s performance. Based on the findings from the performance evaluation, further analysis of the protocol and future research directions are outlined.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信