Mary E. A. Whitehouse, Colin R. Tann, Michael V. Braunack
{"title":"在澳大利亚的 Bt 棉花中,\"破蛹 \"或消灭 Helicoverpa spp.(鳞翅目:夜蛾科)的越冬蛹是否仍然适用?","authors":"Mary E. A. Whitehouse, Colin R. Tann, Michael V. Braunack","doi":"10.1111/aen.12669","DOIUrl":null,"url":null,"abstract":"<p>Transgenic Bt cotton was developed to control lepidopteran pests like the cotton bollworm, <i>Helicoverpa armigera</i>. However, there was concern that <i>H. armigera</i> would develop resistance to Bt cotton as this species had developed resistance to many insecticides and Bt toxins. To counter resistance, the cotton industry developed a resistance management plan (RMP) that included techniques to block resistant genes surviving from one season to the next (seasonal quarantining). One such technique is pupae busting, where cotton fields are cultivated after harvest, destroying potentially resistant pupating <i>Helicoverpa</i> spp. While pupae busting was important when there was only one insecticidal gene in Bt cotton, is it still relevant now Bt cotton has three insecticidal Bt genes? To address this question, we reviewed the development of pupae busting as a tool and its role in the current RMP. This included examining the ecology and behavioural characteristics of <i>Helicoverpa</i> spp. that impact on pupae busting efficacy (e.g., diapause, pupal mortality and pupae depth); the effect of soil type and different tillage techniques on pupae busting efficacy; and pupae busting within the context of Australia's current cotton farming system. We also looked at alternative forms of seasonal quarantining, such as using bisexual attract-and-kill techniques against adults. We confirmed that soil for pupae busting needs to be checked for moisture, which ideally should be less than the soil plastic limit. Comparisons between reports indicated that under good conditions, ‘go-devils’ and chisel ploughs were excellent pupae busters. While a bisexual attract-and-kill strategy of late season moths has a place within the industry, pupae busting is still the best method in seasonal quarantining and has a good fit within the modern cotton industry, particularly given differences in the biology and ecology of <i>H. armigera</i> and <i>H. punctigera</i>, and the presence of dominant resistance to Bt toxins by <i>H. armigera</i> in China.</p>","PeriodicalId":8574,"journal":{"name":"Austral Entomology","volume":"62 4","pages":"392-409"},"PeriodicalIF":1.1000,"publicationDate":"2023-10-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1111/aen.12669","citationCount":"0","resultStr":"{\"title\":\"Is ‘pupae busting’ or destroying overwintering pupae of Helicoverpa spp. (Lepidoptera: Noctuidae) still relevant today in Australian Bt cotton?\",\"authors\":\"Mary E. A. Whitehouse, Colin R. Tann, Michael V. Braunack\",\"doi\":\"10.1111/aen.12669\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Transgenic Bt cotton was developed to control lepidopteran pests like the cotton bollworm, <i>Helicoverpa armigera</i>. However, there was concern that <i>H. armigera</i> would develop resistance to Bt cotton as this species had developed resistance to many insecticides and Bt toxins. To counter resistance, the cotton industry developed a resistance management plan (RMP) that included techniques to block resistant genes surviving from one season to the next (seasonal quarantining). One such technique is pupae busting, where cotton fields are cultivated after harvest, destroying potentially resistant pupating <i>Helicoverpa</i> spp. While pupae busting was important when there was only one insecticidal gene in Bt cotton, is it still relevant now Bt cotton has three insecticidal Bt genes? To address this question, we reviewed the development of pupae busting as a tool and its role in the current RMP. This included examining the ecology and behavioural characteristics of <i>Helicoverpa</i> spp. that impact on pupae busting efficacy (e.g., diapause, pupal mortality and pupae depth); the effect of soil type and different tillage techniques on pupae busting efficacy; and pupae busting within the context of Australia's current cotton farming system. We also looked at alternative forms of seasonal quarantining, such as using bisexual attract-and-kill techniques against adults. We confirmed that soil for pupae busting needs to be checked for moisture, which ideally should be less than the soil plastic limit. Comparisons between reports indicated that under good conditions, ‘go-devils’ and chisel ploughs were excellent pupae busters. While a bisexual attract-and-kill strategy of late season moths has a place within the industry, pupae busting is still the best method in seasonal quarantining and has a good fit within the modern cotton industry, particularly given differences in the biology and ecology of <i>H. armigera</i> and <i>H. punctigera</i>, and the presence of dominant resistance to Bt toxins by <i>H. armigera</i> in China.</p>\",\"PeriodicalId\":8574,\"journal\":{\"name\":\"Austral Entomology\",\"volume\":\"62 4\",\"pages\":\"392-409\"},\"PeriodicalIF\":1.1000,\"publicationDate\":\"2023-10-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://onlinelibrary.wiley.com/doi/epdf/10.1111/aen.12669\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Austral Entomology\",\"FirstCategoryId\":\"97\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1111/aen.12669\",\"RegionNum\":3,\"RegionCategory\":\"农林科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"ENTOMOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Austral Entomology","FirstCategoryId":"97","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1111/aen.12669","RegionNum":3,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENTOMOLOGY","Score":null,"Total":0}
Is ‘pupae busting’ or destroying overwintering pupae of Helicoverpa spp. (Lepidoptera: Noctuidae) still relevant today in Australian Bt cotton?
Transgenic Bt cotton was developed to control lepidopteran pests like the cotton bollworm, Helicoverpa armigera. However, there was concern that H. armigera would develop resistance to Bt cotton as this species had developed resistance to many insecticides and Bt toxins. To counter resistance, the cotton industry developed a resistance management plan (RMP) that included techniques to block resistant genes surviving from one season to the next (seasonal quarantining). One such technique is pupae busting, where cotton fields are cultivated after harvest, destroying potentially resistant pupating Helicoverpa spp. While pupae busting was important when there was only one insecticidal gene in Bt cotton, is it still relevant now Bt cotton has three insecticidal Bt genes? To address this question, we reviewed the development of pupae busting as a tool and its role in the current RMP. This included examining the ecology and behavioural characteristics of Helicoverpa spp. that impact on pupae busting efficacy (e.g., diapause, pupal mortality and pupae depth); the effect of soil type and different tillage techniques on pupae busting efficacy; and pupae busting within the context of Australia's current cotton farming system. We also looked at alternative forms of seasonal quarantining, such as using bisexual attract-and-kill techniques against adults. We confirmed that soil for pupae busting needs to be checked for moisture, which ideally should be less than the soil plastic limit. Comparisons between reports indicated that under good conditions, ‘go-devils’ and chisel ploughs were excellent pupae busters. While a bisexual attract-and-kill strategy of late season moths has a place within the industry, pupae busting is still the best method in seasonal quarantining and has a good fit within the modern cotton industry, particularly given differences in the biology and ecology of H. armigera and H. punctigera, and the presence of dominant resistance to Bt toxins by H. armigera in China.
期刊介绍:
Austral Entomology is a scientific journal of entomology for the Southern Hemisphere. It publishes Original Articles that are peer-reviewed research papers from the study of the behaviour, biology, biosystematics, conservation biology, ecology, evolution, forensic and medical entomology, molecular biology, public health, urban entomology, physiology and the use and control of insects, arachnids and myriapods. The journal also publishes Reviews on research and theory or commentaries on current areas of research, innovation or rapid development likely to be of broad interest – these may be submitted or invited. Book Reviews will also be considered provided the works are of global significance. Manuscripts from authors in the Northern Hemisphere are encouraged provided that the research has relevance to or broad readership within the Southern Hemisphere. All submissions are peer-reviewed by at least two referees expert in the field of the submitted paper. Special issues are encouraged; please contact the Chief Editor for further information.