Jeewan Chun, Ji-Hoi Moon, Kyu Hwan Kwack, Eun-Young Jang, Saebyeol Lee, Hak Kyun Kim, Jae-Hyung Lee
{"title":"单细胞RNA测序揭示了软骨诱导下脂肪组织来源的间充质干细胞的异质性","authors":"Jeewan Chun, Ji-Hoi Moon, Kyu Hwan Kwack, Eun-Young Jang, Saebyeol Lee, Hak Kyun Kim, Jae-Hyung Lee","doi":"10.5483/bmbrep.2023-0161","DOIUrl":null,"url":null,"abstract":"This study investigated how adipose tissue-derived mesenchymal stem cells (AT-MSCs) respond to chondrogenic induction using droplet-based single-cell RNA sequencing (scRNA-seq). We analyzed 37,219 high-quality transcripts from control cells and cells induced for 1 week (1W) and 2 weeks (2W). Four distinct cell clusters (0-3), undetectable by bulk analysis, exhibited varying proportions. Cluster 1 dominated in control and 1W cells, whereas cluster 3, 2, and 0 exclusively dominated in control, 1W, and 2W cells, respectively. Furthermore, heterogeneous chondrogenic markers expression within clusters emerged. Gene ontology (GO) enrichment analysis of differentially expressed genes unveiled cluster-specific variations in key biological processes (BP): (1) Cluster 1 exhibited upregulation of GO-BP terms related to ribosome biogenesis and translational control, crucial for maintaining stem cell properties and homeostasis; (2) Additionally, cluster 1 showed upregulation of GO-BP terms associated with mitochondrial oxidative metabolism; (3) Cluster 3 displayed upregulation of GO-BP terms related to cell proliferation; (4) Clusters 0 and 2 demonstrated similar upregulation of GO-BP terms linked to collagen fibril organization and supramolecular fiber organization. However, only cluster 0 showed a significant decrease in GO-BP terms related to ribosome production, implying a potential correlation between ribosome regulation and the differentiation stages of AT-MSCs. Overall, our findings highlight heterogeneous cell clusters with varying balances between proliferation and differentiation before and after chondrogenic stimulation. This provides enhanced insights into the single-cell dynamics of AT-MCSs during chondrogenic differentiation.","PeriodicalId":15113,"journal":{"name":"Journal of biochemistry and molecular biology","volume":"162 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-10-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Single-cell RNA sequencing reveals heterogeneity of adipose tissue-derived mesenchymal stem cells under chondrogenic induction\",\"authors\":\"Jeewan Chun, Ji-Hoi Moon, Kyu Hwan Kwack, Eun-Young Jang, Saebyeol Lee, Hak Kyun Kim, Jae-Hyung Lee\",\"doi\":\"10.5483/bmbrep.2023-0161\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This study investigated how adipose tissue-derived mesenchymal stem cells (AT-MSCs) respond to chondrogenic induction using droplet-based single-cell RNA sequencing (scRNA-seq). We analyzed 37,219 high-quality transcripts from control cells and cells induced for 1 week (1W) and 2 weeks (2W). Four distinct cell clusters (0-3), undetectable by bulk analysis, exhibited varying proportions. Cluster 1 dominated in control and 1W cells, whereas cluster 3, 2, and 0 exclusively dominated in control, 1W, and 2W cells, respectively. Furthermore, heterogeneous chondrogenic markers expression within clusters emerged. Gene ontology (GO) enrichment analysis of differentially expressed genes unveiled cluster-specific variations in key biological processes (BP): (1) Cluster 1 exhibited upregulation of GO-BP terms related to ribosome biogenesis and translational control, crucial for maintaining stem cell properties and homeostasis; (2) Additionally, cluster 1 showed upregulation of GO-BP terms associated with mitochondrial oxidative metabolism; (3) Cluster 3 displayed upregulation of GO-BP terms related to cell proliferation; (4) Clusters 0 and 2 demonstrated similar upregulation of GO-BP terms linked to collagen fibril organization and supramolecular fiber organization. However, only cluster 0 showed a significant decrease in GO-BP terms related to ribosome production, implying a potential correlation between ribosome regulation and the differentiation stages of AT-MSCs. Overall, our findings highlight heterogeneous cell clusters with varying balances between proliferation and differentiation before and after chondrogenic stimulation. This provides enhanced insights into the single-cell dynamics of AT-MCSs during chondrogenic differentiation.\",\"PeriodicalId\":15113,\"journal\":{\"name\":\"Journal of biochemistry and molecular biology\",\"volume\":\"162 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-10-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of biochemistry and molecular biology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.5483/bmbrep.2023-0161\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of biochemistry and molecular biology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.5483/bmbrep.2023-0161","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Single-cell RNA sequencing reveals heterogeneity of adipose tissue-derived mesenchymal stem cells under chondrogenic induction
This study investigated how adipose tissue-derived mesenchymal stem cells (AT-MSCs) respond to chondrogenic induction using droplet-based single-cell RNA sequencing (scRNA-seq). We analyzed 37,219 high-quality transcripts from control cells and cells induced for 1 week (1W) and 2 weeks (2W). Four distinct cell clusters (0-3), undetectable by bulk analysis, exhibited varying proportions. Cluster 1 dominated in control and 1W cells, whereas cluster 3, 2, and 0 exclusively dominated in control, 1W, and 2W cells, respectively. Furthermore, heterogeneous chondrogenic markers expression within clusters emerged. Gene ontology (GO) enrichment analysis of differentially expressed genes unveiled cluster-specific variations in key biological processes (BP): (1) Cluster 1 exhibited upregulation of GO-BP terms related to ribosome biogenesis and translational control, crucial for maintaining stem cell properties and homeostasis; (2) Additionally, cluster 1 showed upregulation of GO-BP terms associated with mitochondrial oxidative metabolism; (3) Cluster 3 displayed upregulation of GO-BP terms related to cell proliferation; (4) Clusters 0 and 2 demonstrated similar upregulation of GO-BP terms linked to collagen fibril organization and supramolecular fiber organization. However, only cluster 0 showed a significant decrease in GO-BP terms related to ribosome production, implying a potential correlation between ribosome regulation and the differentiation stages of AT-MSCs. Overall, our findings highlight heterogeneous cell clusters with varying balances between proliferation and differentiation before and after chondrogenic stimulation. This provides enhanced insights into the single-cell dynamics of AT-MCSs during chondrogenic differentiation.