用于高利用率锌阳极的自组装单层分子工程学

IF 42.9 Q1 ELECTROCHEMISTRY
Lei Zhang , Jin Xiao , Xilin Xiao , Wenli Xin , Yaheng Geng , Zichao Yan , Zhiqiang Zhu
{"title":"用于高利用率锌阳极的自组装单层分子工程学","authors":"Lei Zhang ,&nbsp;Jin Xiao ,&nbsp;Xilin Xiao ,&nbsp;Wenli Xin ,&nbsp;Yaheng Geng ,&nbsp;Zichao Yan ,&nbsp;Zhiqiang Zhu","doi":"10.1016/j.esci.2023.100205","DOIUrl":null,"url":null,"abstract":"<div><p>Stabilizing the Zn anode under high utilization rates is highly applauded yet very challenging in aqueous Zn batteries. Here, we rationally design a zincophilic short-chain aromatic molecule, 4-mercaptopyridine (4Mpy), to construct self-assembled monolayers (SAMs) on a copper substrate to achieve highly utilized Zn anodes. We reveal that 4Mpy could be firmly bound on the Cu substrate via Cu–S bond to form compact and uniform SAMs, which could effectively isolate the water on the electrode surface and thus eliminate the water-related side reactions. In addition, the short-chain aromatic ring structure of 4Mpy could not only ensure the ordered arrangement of zincophilic pyridine N but also facilitate charge transfer, thus enabling uniform and rapid Zn deposition. Consequently, the Zn/4Mpy/Cu electrode not only enables the symmetric cell to stably cycle for over 180 ​h at 10 ​mA ​cm<sup>−2</sup> under a high depth-of-discharge of 90%, but also allows the MnO<sub>2</sub>-paired pouch cell to survive for 100 cycles under a high Zn utilization rate of 78.8%. An anode-free 4Mpy/Cu||graphite cell also operates for 150 cycles without obvious capacity fading at 0.1 ​A ​g<sup>−1</sup>. This control of interfacial chemistry via SAMs to achieve high utilization rates of metal anodes provides a new paradigm for developing high-energy metal-based batteries.</p></div>","PeriodicalId":100489,"journal":{"name":"eScience","volume":"4 2","pages":"Article 100205"},"PeriodicalIF":42.9000,"publicationDate":"2023-10-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2667141723001507/pdfft?md5=11125af729dee09f1a1add11d8fdf975&pid=1-s2.0-S2667141723001507-main.pdf","citationCount":"0","resultStr":"{\"title\":\"Molecular engineering of self-assembled monolayers for highly utilized Zn anodes\",\"authors\":\"Lei Zhang ,&nbsp;Jin Xiao ,&nbsp;Xilin Xiao ,&nbsp;Wenli Xin ,&nbsp;Yaheng Geng ,&nbsp;Zichao Yan ,&nbsp;Zhiqiang Zhu\",\"doi\":\"10.1016/j.esci.2023.100205\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Stabilizing the Zn anode under high utilization rates is highly applauded yet very challenging in aqueous Zn batteries. Here, we rationally design a zincophilic short-chain aromatic molecule, 4-mercaptopyridine (4Mpy), to construct self-assembled monolayers (SAMs) on a copper substrate to achieve highly utilized Zn anodes. We reveal that 4Mpy could be firmly bound on the Cu substrate via Cu–S bond to form compact and uniform SAMs, which could effectively isolate the water on the electrode surface and thus eliminate the water-related side reactions. In addition, the short-chain aromatic ring structure of 4Mpy could not only ensure the ordered arrangement of zincophilic pyridine N but also facilitate charge transfer, thus enabling uniform and rapid Zn deposition. Consequently, the Zn/4Mpy/Cu electrode not only enables the symmetric cell to stably cycle for over 180 ​h at 10 ​mA ​cm<sup>−2</sup> under a high depth-of-discharge of 90%, but also allows the MnO<sub>2</sub>-paired pouch cell to survive for 100 cycles under a high Zn utilization rate of 78.8%. An anode-free 4Mpy/Cu||graphite cell also operates for 150 cycles without obvious capacity fading at 0.1 ​A ​g<sup>−1</sup>. This control of interfacial chemistry via SAMs to achieve high utilization rates of metal anodes provides a new paradigm for developing high-energy metal-based batteries.</p></div>\",\"PeriodicalId\":100489,\"journal\":{\"name\":\"eScience\",\"volume\":\"4 2\",\"pages\":\"Article 100205\"},\"PeriodicalIF\":42.9000,\"publicationDate\":\"2023-10-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.sciencedirect.com/science/article/pii/S2667141723001507/pdfft?md5=11125af729dee09f1a1add11d8fdf975&pid=1-s2.0-S2667141723001507-main.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"eScience\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2667141723001507\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ELECTROCHEMISTRY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"eScience","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2667141723001507","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ELECTROCHEMISTRY","Score":null,"Total":0}
引用次数: 0

摘要

在高利用率下稳定锌阳极备受赞誉,但在水性锌电池中却极具挑战性。在这里,我们合理地设计了一种亲锌短链芳香族分子--4-巯基吡啶(4Mpy),在铜基底上构建自组装单层(SAM),以实现高利用率的锌阳极。我们发现,4Mpy 可通过 Cu-S 键牢固地结合在铜基板上,形成紧凑均匀的 SAM,从而有效隔离电极表面的水,消除与水相关的副反应。此外,4Mpy 的短链芳环结构不仅能确保亲锌吡啶 N 的有序排列,还能促进电荷转移,从而实现均匀、快速的锌沉积。因此,Zn/4Mpy/Cu 电极不仅能使对称电池在 10 mA cm-2 的条件下以 90% 的高放电深度稳定循环超过 180 小时,还能使 MnO2 对袋电池在 78.8% 的高锌利用率下存活 100 个循环。无阳极的 4Mpy/Cu||| 石墨电池也能在 0.1 A g-1 的条件下运行 150 个循环,且无明显的容量衰减。这种通过 SAMs 控制界面化学以实现金属阳极高利用率的方法为开发高能量金属基电池提供了一种新的范例。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Molecular engineering of self-assembled monolayers for highly utilized Zn anodes

Molecular engineering of self-assembled monolayers for highly utilized Zn anodes

Molecular engineering of self-assembled monolayers for highly utilized Zn anodes

Stabilizing the Zn anode under high utilization rates is highly applauded yet very challenging in aqueous Zn batteries. Here, we rationally design a zincophilic short-chain aromatic molecule, 4-mercaptopyridine (4Mpy), to construct self-assembled monolayers (SAMs) on a copper substrate to achieve highly utilized Zn anodes. We reveal that 4Mpy could be firmly bound on the Cu substrate via Cu–S bond to form compact and uniform SAMs, which could effectively isolate the water on the electrode surface and thus eliminate the water-related side reactions. In addition, the short-chain aromatic ring structure of 4Mpy could not only ensure the ordered arrangement of zincophilic pyridine N but also facilitate charge transfer, thus enabling uniform and rapid Zn deposition. Consequently, the Zn/4Mpy/Cu electrode not only enables the symmetric cell to stably cycle for over 180 ​h at 10 ​mA ​cm−2 under a high depth-of-discharge of 90%, but also allows the MnO2-paired pouch cell to survive for 100 cycles under a high Zn utilization rate of 78.8%. An anode-free 4Mpy/Cu||graphite cell also operates for 150 cycles without obvious capacity fading at 0.1 ​A ​g−1. This control of interfacial chemistry via SAMs to achieve high utilization rates of metal anodes provides a new paradigm for developing high-energy metal-based batteries.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
33.70
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信