Jiayu Zhao, Feifan Zhu, Yongpeng Han, Qining Wang, Li Lao, Xiaofeng Li, Yan Peng, Yiming Zhu
{"title":"光导-空气中宽带太赫兹脉冲的基于光的时间集成","authors":"Jiayu Zhao, Feifan Zhu, Yongpeng Han, Qining Wang, Li Lao, Xiaofeng Li, Yan Peng, Yiming Zhu","doi":"10.1063/5.0158107","DOIUrl":null,"url":null,"abstract":"The next generation of all-optical computation platforms prefers the light-guiding-light (LGL) scheme inside a medium that envisions circuitry-free and rapidly reconfigurable systems powered by dynamic interactions between light beams. Currently, suitable LGL materials and corresponding mechanisms are in urgent need. In this work, we proposed ubiquitous air as a restorable LGL signal manipulation medium with transient air-plasma waveguide circuits. Briefly, by focusing femtosecond laser beams in free space, the created atmospheric plasma filament array via photoionization was able to guide terahertz (THz) pulses along its epsilon-near-zero zone with a 1/f-profile spectral response. Consequently, this achieved a time-domain integration of the THz pulse in broad bandwidth. When the pumping laser was sequentially turned off and on, this air-plasma multi-filament structure was erased and rebuilt within nano- and femto-seconds, respectively, allowing rapid and repeated rearrangements of the all-optical stage. Furthermore, this air-based LGL information processing approach is promising to pave the way toward all-optical calculations during free-space directional transmission of THz waves, in which way the delivered THz signal can be remotely controlled.","PeriodicalId":8198,"journal":{"name":"APL Photonics","volume":"33 1","pages":"0"},"PeriodicalIF":5.4000,"publicationDate":"2023-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Light-guiding-light-based temporal integration of broadband terahertz pulses in air\",\"authors\":\"Jiayu Zhao, Feifan Zhu, Yongpeng Han, Qining Wang, Li Lao, Xiaofeng Li, Yan Peng, Yiming Zhu\",\"doi\":\"10.1063/5.0158107\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The next generation of all-optical computation platforms prefers the light-guiding-light (LGL) scheme inside a medium that envisions circuitry-free and rapidly reconfigurable systems powered by dynamic interactions between light beams. Currently, suitable LGL materials and corresponding mechanisms are in urgent need. In this work, we proposed ubiquitous air as a restorable LGL signal manipulation medium with transient air-plasma waveguide circuits. Briefly, by focusing femtosecond laser beams in free space, the created atmospheric plasma filament array via photoionization was able to guide terahertz (THz) pulses along its epsilon-near-zero zone with a 1/f-profile spectral response. Consequently, this achieved a time-domain integration of the THz pulse in broad bandwidth. When the pumping laser was sequentially turned off and on, this air-plasma multi-filament structure was erased and rebuilt within nano- and femto-seconds, respectively, allowing rapid and repeated rearrangements of the all-optical stage. Furthermore, this air-based LGL information processing approach is promising to pave the way toward all-optical calculations during free-space directional transmission of THz waves, in which way the delivered THz signal can be remotely controlled.\",\"PeriodicalId\":8198,\"journal\":{\"name\":\"APL Photonics\",\"volume\":\"33 1\",\"pages\":\"0\"},\"PeriodicalIF\":5.4000,\"publicationDate\":\"2023-10-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"APL Photonics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1063/5.0158107\",\"RegionNum\":1,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"OPTICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"APL Photonics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1063/5.0158107","RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"OPTICS","Score":null,"Total":0}
Light-guiding-light-based temporal integration of broadband terahertz pulses in air
The next generation of all-optical computation platforms prefers the light-guiding-light (LGL) scheme inside a medium that envisions circuitry-free and rapidly reconfigurable systems powered by dynamic interactions between light beams. Currently, suitable LGL materials and corresponding mechanisms are in urgent need. In this work, we proposed ubiquitous air as a restorable LGL signal manipulation medium with transient air-plasma waveguide circuits. Briefly, by focusing femtosecond laser beams in free space, the created atmospheric plasma filament array via photoionization was able to guide terahertz (THz) pulses along its epsilon-near-zero zone with a 1/f-profile spectral response. Consequently, this achieved a time-domain integration of the THz pulse in broad bandwidth. When the pumping laser was sequentially turned off and on, this air-plasma multi-filament structure was erased and rebuilt within nano- and femto-seconds, respectively, allowing rapid and repeated rearrangements of the all-optical stage. Furthermore, this air-based LGL information processing approach is promising to pave the way toward all-optical calculations during free-space directional transmission of THz waves, in which way the delivered THz signal can be remotely controlled.
APL PhotonicsPhysics and Astronomy-Atomic and Molecular Physics, and Optics
CiteScore
10.30
自引率
3.60%
发文量
107
审稿时长
19 weeks
期刊介绍:
APL Photonics is the new dedicated home for open access multidisciplinary research from and for the photonics community. The journal publishes fundamental and applied results that significantly advance the knowledge in photonics across physics, chemistry, biology and materials science.