Justin Kim, Marcus A Threadcraft, Wei Xue, Sijie Yue, Richard P Wenzel, Frederick S Southwick
{"title":"家庭发热监测:预防COVID-19家庭传播的一种廉价筛查方法","authors":"Justin Kim, Marcus A Threadcraft, Wei Xue, Sijie Yue, Richard P Wenzel, Frederick S Southwick","doi":"10.26502/jbb.2642-91280101","DOIUrl":null,"url":null,"abstract":"The COVID-19 pandemic surge has exceeded testing capacities in many parts of the world. We investigated the effectiveness of home temperature monitoring for early identification of COVID-19 patients. Study Design: We compared home temperature measurements from a convenience sample of 1180 individuals who reported being test positive for SARS-CoV-2 to an age, sex, and location matched control group of 1249 individuals who had not tested positive. Methods: All individuals monitored their temperature at home using an electronic smartphone thermometer that relayed temperature measurements and symptoms to a centralized cloud based, de-identified data bank. Results: Individuals varied in the number of times they monitored their temperature. When temperature was monitored for over 72 hours fever (> 37.6°C or 99.7°F or a change in temperature of > 1°C or 1.8°F) was detected in 73% of test positive individuals, a sensitivity comparable to rapid SARS-CoV-2 antigen tests. When compared our control group the specificity of fever for COVID-19 was 0.70. However, when fever was combined with complaints of loss of taste and smell, difficulty breathing, fatigue, chills, diarrhea, or stuffy nose the odds ratio of having COVID-19 was sufficiently high as to obviate the need to employ RTPCR or antigen testing to screen for and isolate coronavirus infected cases. Conclusions: Our findings suggest that home temperature monitoring could serve as an inexpensive convenient screen for the onset of COVID-19, encourage earlier isolation of potentially infected individuals, and more effectively reduce the spread of infection in closed spaces.","PeriodicalId":15066,"journal":{"name":"Journal of Biotechnology and Biomedicine","volume":"56 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Home Monitoring for Fever: An Inexpensive Screening Method to Prevent Household Spread of COVID-19\",\"authors\":\"Justin Kim, Marcus A Threadcraft, Wei Xue, Sijie Yue, Richard P Wenzel, Frederick S Southwick\",\"doi\":\"10.26502/jbb.2642-91280101\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The COVID-19 pandemic surge has exceeded testing capacities in many parts of the world. We investigated the effectiveness of home temperature monitoring for early identification of COVID-19 patients. Study Design: We compared home temperature measurements from a convenience sample of 1180 individuals who reported being test positive for SARS-CoV-2 to an age, sex, and location matched control group of 1249 individuals who had not tested positive. Methods: All individuals monitored their temperature at home using an electronic smartphone thermometer that relayed temperature measurements and symptoms to a centralized cloud based, de-identified data bank. Results: Individuals varied in the number of times they monitored their temperature. When temperature was monitored for over 72 hours fever (> 37.6°C or 99.7°F or a change in temperature of > 1°C or 1.8°F) was detected in 73% of test positive individuals, a sensitivity comparable to rapid SARS-CoV-2 antigen tests. When compared our control group the specificity of fever for COVID-19 was 0.70. However, when fever was combined with complaints of loss of taste and smell, difficulty breathing, fatigue, chills, diarrhea, or stuffy nose the odds ratio of having COVID-19 was sufficiently high as to obviate the need to employ RTPCR or antigen testing to screen for and isolate coronavirus infected cases. Conclusions: Our findings suggest that home temperature monitoring could serve as an inexpensive convenient screen for the onset of COVID-19, encourage earlier isolation of potentially infected individuals, and more effectively reduce the spread of infection in closed spaces.\",\"PeriodicalId\":15066,\"journal\":{\"name\":\"Journal of Biotechnology and Biomedicine\",\"volume\":\"56 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Biotechnology and Biomedicine\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.26502/jbb.2642-91280101\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Biotechnology and Biomedicine","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.26502/jbb.2642-91280101","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Home Monitoring for Fever: An Inexpensive Screening Method to Prevent Household Spread of COVID-19
The COVID-19 pandemic surge has exceeded testing capacities in many parts of the world. We investigated the effectiveness of home temperature monitoring for early identification of COVID-19 patients. Study Design: We compared home temperature measurements from a convenience sample of 1180 individuals who reported being test positive for SARS-CoV-2 to an age, sex, and location matched control group of 1249 individuals who had not tested positive. Methods: All individuals monitored their temperature at home using an electronic smartphone thermometer that relayed temperature measurements and symptoms to a centralized cloud based, de-identified data bank. Results: Individuals varied in the number of times they monitored their temperature. When temperature was monitored for over 72 hours fever (> 37.6°C or 99.7°F or a change in temperature of > 1°C or 1.8°F) was detected in 73% of test positive individuals, a sensitivity comparable to rapid SARS-CoV-2 antigen tests. When compared our control group the specificity of fever for COVID-19 was 0.70. However, when fever was combined with complaints of loss of taste and smell, difficulty breathing, fatigue, chills, diarrhea, or stuffy nose the odds ratio of having COVID-19 was sufficiently high as to obviate the need to employ RTPCR or antigen testing to screen for and isolate coronavirus infected cases. Conclusions: Our findings suggest that home temperature monitoring could serve as an inexpensive convenient screen for the onset of COVID-19, encourage earlier isolation of potentially infected individuals, and more effectively reduce the spread of infection in closed spaces.