d -凹非自治标量常微分方程的广义Pitchfork分岔

IF 16.4 1区 化学 Q1 CHEMISTRY, MULTIDISCIPLINARY
Jesús Dueñas, Carmen Núñez, Rafael Obaya
{"title":"d -凹非自治标量常微分方程的广义Pitchfork分岔","authors":"Jesús Dueñas, Carmen Núñez, Rafael Obaya","doi":"10.1007/s10884-023-10309-8","DOIUrl":null,"url":null,"abstract":"Abstract The global bifurcation diagrams for two different one-parametric perturbations ( $$+\\lambda x$$ <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\"> <mml:mrow> <mml:mo>+</mml:mo> <mml:mi>λ</mml:mi> <mml:mi>x</mml:mi> </mml:mrow> </mml:math> and $$+\\lambda x^2$$ <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\"> <mml:mrow> <mml:mo>+</mml:mo> <mml:mi>λ</mml:mi> <mml:msup> <mml:mi>x</mml:mi> <mml:mn>2</mml:mn> </mml:msup> </mml:mrow> </mml:math> ) of a dissipative scalar nonautonomous ordinary differential equation $$x'=f(t,x)$$ <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\"> <mml:mrow> <mml:msup> <mml:mi>x</mml:mi> <mml:mo>′</mml:mo> </mml:msup> <mml:mo>=</mml:mo> <mml:mi>f</mml:mi> <mml:mrow> <mml:mo>(</mml:mo> <mml:mi>t</mml:mi> <mml:mo>,</mml:mo> <mml:mi>x</mml:mi> <mml:mo>)</mml:mo> </mml:mrow> </mml:mrow> </mml:math> are described assuming that 0 is a constant solution, that f is recurrent in t , and that its first derivative with respect to x is a strictly concave function. The use of the skewproduct formalism allows us to identify bifurcations with changes in the number of minimal sets and in the shape of the global attractor. In the case of perturbation $$+\\lambda x$$ <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\"> <mml:mrow> <mml:mo>+</mml:mo> <mml:mi>λ</mml:mi> <mml:mi>x</mml:mi> </mml:mrow> </mml:math> , a so-called generalized pitchfork bifurcation may arise, with the particularity of lack of an analogue in autonomous dynamics. This new bifurcation pattern is extensively investigated in this work.","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":null,"pages":null},"PeriodicalIF":16.4000,"publicationDate":"2023-09-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Generalized Pitchfork Bifurcations in D-Concave Nonautonomous Scalar Ordinary Differential Equations\",\"authors\":\"Jesús Dueñas, Carmen Núñez, Rafael Obaya\",\"doi\":\"10.1007/s10884-023-10309-8\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract The global bifurcation diagrams for two different one-parametric perturbations ( $$+\\\\lambda x$$ <mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\"> <mml:mrow> <mml:mo>+</mml:mo> <mml:mi>λ</mml:mi> <mml:mi>x</mml:mi> </mml:mrow> </mml:math> and $$+\\\\lambda x^2$$ <mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\"> <mml:mrow> <mml:mo>+</mml:mo> <mml:mi>λ</mml:mi> <mml:msup> <mml:mi>x</mml:mi> <mml:mn>2</mml:mn> </mml:msup> </mml:mrow> </mml:math> ) of a dissipative scalar nonautonomous ordinary differential equation $$x'=f(t,x)$$ <mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\"> <mml:mrow> <mml:msup> <mml:mi>x</mml:mi> <mml:mo>′</mml:mo> </mml:msup> <mml:mo>=</mml:mo> <mml:mi>f</mml:mi> <mml:mrow> <mml:mo>(</mml:mo> <mml:mi>t</mml:mi> <mml:mo>,</mml:mo> <mml:mi>x</mml:mi> <mml:mo>)</mml:mo> </mml:mrow> </mml:mrow> </mml:math> are described assuming that 0 is a constant solution, that f is recurrent in t , and that its first derivative with respect to x is a strictly concave function. The use of the skewproduct formalism allows us to identify bifurcations with changes in the number of minimal sets and in the shape of the global attractor. In the case of perturbation $$+\\\\lambda x$$ <mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\"> <mml:mrow> <mml:mo>+</mml:mo> <mml:mi>λ</mml:mi> <mml:mi>x</mml:mi> </mml:mrow> </mml:math> , a so-called generalized pitchfork bifurcation may arise, with the particularity of lack of an analogue in autonomous dynamics. This new bifurcation pattern is extensively investigated in this work.\",\"PeriodicalId\":1,\"journal\":{\"name\":\"Accounts of Chemical Research\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":16.4000,\"publicationDate\":\"2023-09-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Accounts of Chemical Research\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1007/s10884-023-10309-8\",\"RegionNum\":1,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1007/s10884-023-10309-8","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 2

摘要

摘要描述了一个耗散标量非自治常微分方程$$x'=f(t,x)$$ x ' = f (t, x)的两个不同单参数扰动($$+\lambda x$$ + λ x和$$+\lambda x^2$$ + λ x 2)的全局分岔图,假设0是常数解,f在t中循环,其关于x的一阶导数是严格凹函数。斜积形式的使用使我们能够识别最小集数量和全局吸引子形状变化的分岔。在摄动$$+\lambda x$$ + λ x的情况下,可能会出现所谓的广义干草叉分岔,其特点是在自主动力学中缺乏类似物。本文对这种新的分岔模式进行了广泛的研究。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Generalized Pitchfork Bifurcations in D-Concave Nonautonomous Scalar Ordinary Differential Equations

Generalized Pitchfork Bifurcations in D-Concave Nonautonomous Scalar Ordinary Differential Equations
Abstract The global bifurcation diagrams for two different one-parametric perturbations ( $$+\lambda x$$ + λ x and $$+\lambda x^2$$ + λ x 2 ) of a dissipative scalar nonautonomous ordinary differential equation $$x'=f(t,x)$$ x = f ( t , x ) are described assuming that 0 is a constant solution, that f is recurrent in t , and that its first derivative with respect to x is a strictly concave function. The use of the skewproduct formalism allows us to identify bifurcations with changes in the number of minimal sets and in the shape of the global attractor. In the case of perturbation $$+\lambda x$$ + λ x , a so-called generalized pitchfork bifurcation may arise, with the particularity of lack of an analogue in autonomous dynamics. This new bifurcation pattern is extensively investigated in this work.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Accounts of Chemical Research
Accounts of Chemical Research 化学-化学综合
CiteScore
31.40
自引率
1.10%
发文量
312
审稿时长
2 months
期刊介绍: Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance. Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信