Alexander P. Hawkins, Andrea Zachariou, Paul Collier, Russell F. Howe, David Lennon, Stewart F. Parker
{"title":"HZSM-5中丙烯和1-辛烯寡聚的非弹性中子散射研究","authors":"Alexander P. Hawkins, Andrea Zachariou, Paul Collier, Russell F. Howe, David Lennon, Stewart F. Parker","doi":"10.1595/205651324x16964134291592","DOIUrl":null,"url":null,"abstract":"Neutron scattering methods (quasielastic neutron scattering (QENS) and inelastic neutron scattering (INS)) have been used to study the reactivity of propene and 1-octene over the acid zeolite catalyst H-ZSM 5. The high activity of the catalyst causes the alkenes to form linear oligomers below room temperature. INS has shown that the reaction proceeds through a hydrogen-bonded intermediate. Studies using propane as an inert analogue for propene have found that the adsorbed C3 molecules spend the majority of their time undergoing short jumps within the pore channels of the zeolite. Hydrothermal de-alumination plays an important role in determining the activity of zeolite catalysts. De-alumination was found to delay the onset of catalytic activity for oligomerization to higher temperatures and increase the mobility of hydrocarbons within the zeolite, both due to reduced acid-hydrocarbon interactions.","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":null,"pages":null},"PeriodicalIF":16.4000,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Inelastic Neutron Scattering Studies of Propene and 1-Octene Oligomerisation in HZSM-5\",\"authors\":\"Alexander P. Hawkins, Andrea Zachariou, Paul Collier, Russell F. Howe, David Lennon, Stewart F. Parker\",\"doi\":\"10.1595/205651324x16964134291592\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Neutron scattering methods (quasielastic neutron scattering (QENS) and inelastic neutron scattering (INS)) have been used to study the reactivity of propene and 1-octene over the acid zeolite catalyst H-ZSM 5. The high activity of the catalyst causes the alkenes to form linear oligomers below room temperature. INS has shown that the reaction proceeds through a hydrogen-bonded intermediate. Studies using propane as an inert analogue for propene have found that the adsorbed C3 molecules spend the majority of their time undergoing short jumps within the pore channels of the zeolite. Hydrothermal de-alumination plays an important role in determining the activity of zeolite catalysts. De-alumination was found to delay the onset of catalytic activity for oligomerization to higher temperatures and increase the mobility of hydrocarbons within the zeolite, both due to reduced acid-hydrocarbon interactions.\",\"PeriodicalId\":1,\"journal\":{\"name\":\"Accounts of Chemical Research\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":16.4000,\"publicationDate\":\"2023-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Accounts of Chemical Research\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1595/205651324x16964134291592\",\"RegionNum\":1,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1595/205651324x16964134291592","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
Inelastic Neutron Scattering Studies of Propene and 1-Octene Oligomerisation in HZSM-5
Neutron scattering methods (quasielastic neutron scattering (QENS) and inelastic neutron scattering (INS)) have been used to study the reactivity of propene and 1-octene over the acid zeolite catalyst H-ZSM 5. The high activity of the catalyst causes the alkenes to form linear oligomers below room temperature. INS has shown that the reaction proceeds through a hydrogen-bonded intermediate. Studies using propane as an inert analogue for propene have found that the adsorbed C3 molecules spend the majority of their time undergoing short jumps within the pore channels of the zeolite. Hydrothermal de-alumination plays an important role in determining the activity of zeolite catalysts. De-alumination was found to delay the onset of catalytic activity for oligomerization to higher temperatures and increase the mobility of hydrocarbons within the zeolite, both due to reduced acid-hydrocarbon interactions.
期刊介绍:
Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance.
Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.