{"title":"折纸灵感设计的单自由度可重构机翼,具有可锁定机制","authors":"Xiong Zhang, Xi Kang, Bing Li","doi":"10.1115/1.4063456","DOIUrl":null,"url":null,"abstract":"Abstract The morphing wing can enable the aircraft to maintain good flight performance in different missions or flight stages, which has enjoyed much attention in recent research. However, it is difficult to design the wing with multiple configurations and lightweight. Inspired by the origami art, a reconfigurable mechanism with a single-degree-of-freedom (single-DOF) is introduced to the morphing wing design in this paper. The bending configuration, the deployable configuration, and the configuration transformation of the reconfigurable mechanism are respectively analyzed. The lengths of some links are also optimized according to the motion requirements. Specific kinematic pairs of the reconfigurable mechanism are required to have the locking function. Therefore, a reliable “plug-in” type lockable mechanism is designed and its working performance is verified by comparing the analytical model and the finite element method model. Finally, by assembling the reconfigurable mechanism with the ribs, the reconfigurable wing which can realize the arbitrary transformation of four configurations under a single drive mode can be obtained.","PeriodicalId":49155,"journal":{"name":"Journal of Mechanisms and Robotics-Transactions of the Asme","volume":"1 1","pages":"0"},"PeriodicalIF":2.2000,"publicationDate":"2023-10-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Origami-inspired design of a single-DOF reconfigurable wing with lockable mechanisms\",\"authors\":\"Xiong Zhang, Xi Kang, Bing Li\",\"doi\":\"10.1115/1.4063456\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract The morphing wing can enable the aircraft to maintain good flight performance in different missions or flight stages, which has enjoyed much attention in recent research. However, it is difficult to design the wing with multiple configurations and lightweight. Inspired by the origami art, a reconfigurable mechanism with a single-degree-of-freedom (single-DOF) is introduced to the morphing wing design in this paper. The bending configuration, the deployable configuration, and the configuration transformation of the reconfigurable mechanism are respectively analyzed. The lengths of some links are also optimized according to the motion requirements. Specific kinematic pairs of the reconfigurable mechanism are required to have the locking function. Therefore, a reliable “plug-in” type lockable mechanism is designed and its working performance is verified by comparing the analytical model and the finite element method model. Finally, by assembling the reconfigurable mechanism with the ribs, the reconfigurable wing which can realize the arbitrary transformation of four configurations under a single drive mode can be obtained.\",\"PeriodicalId\":49155,\"journal\":{\"name\":\"Journal of Mechanisms and Robotics-Transactions of the Asme\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":2.2000,\"publicationDate\":\"2023-10-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Mechanisms and Robotics-Transactions of the Asme\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1115/1.4063456\",\"RegionNum\":4,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENGINEERING, MECHANICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Mechanisms and Robotics-Transactions of the Asme","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1115/1.4063456","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, MECHANICAL","Score":null,"Total":0}
Origami-inspired design of a single-DOF reconfigurable wing with lockable mechanisms
Abstract The morphing wing can enable the aircraft to maintain good flight performance in different missions or flight stages, which has enjoyed much attention in recent research. However, it is difficult to design the wing with multiple configurations and lightweight. Inspired by the origami art, a reconfigurable mechanism with a single-degree-of-freedom (single-DOF) is introduced to the morphing wing design in this paper. The bending configuration, the deployable configuration, and the configuration transformation of the reconfigurable mechanism are respectively analyzed. The lengths of some links are also optimized according to the motion requirements. Specific kinematic pairs of the reconfigurable mechanism are required to have the locking function. Therefore, a reliable “plug-in” type lockable mechanism is designed and its working performance is verified by comparing the analytical model and the finite element method model. Finally, by assembling the reconfigurable mechanism with the ribs, the reconfigurable wing which can realize the arbitrary transformation of four configurations under a single drive mode can be obtained.
期刊介绍:
Fundamental theory, algorithms, design, manufacture, and experimental validation for mechanisms and robots; Theoretical and applied kinematics; Mechanism synthesis and design; Analysis and design of robot manipulators, hands and legs, soft robotics, compliant mechanisms, origami and folded robots, printed robots, and haptic devices; Novel fabrication; Actuation and control techniques for mechanisms and robotics; Bio-inspired approaches to mechanism and robot design; Mechanics and design of micro- and nano-scale devices.