{"title":"光动力治疗用水溶性酞菁光敏剂","authors":"İPEK ÖMEROĞLU, MAHMUT DURMUŞ","doi":"10.55730/1300-0527.3583","DOIUrl":null,"url":null,"abstract":"Photodynamic therapy (PDT) is based on a photochemical reaction that is started when a photosensitizing process is activated by the light and results in the death of tumor cells. Solubility is crucial in PDT applications to investigate the physical and chemical characteristics of phthalocyanines, but, unfortunately, most phthalocyanines show limited solubility especially in water. To increase the solubility of phthalocyanines in polar solvents and water, ionic groups such as -SO3 - , -NR3 +, -COO- , and nonionic groups such as poly-oxy chains are frequently added to the peripheral or nonperipheral positions of the phthalocyanine framework. Since water-solubility and NIR-absorbing properties are essential for efficient PDT activation, studies have been focused on the synthesis of these types of phthalocyanine derivatives. This review focuses on the photophysical, photochemical, and some in vitro or in vivo studies of the recently published ionic and nonionic phthalocyanine-mediated photosensitizers carried out in the last five years. This review will have positive contributions to future studies on phthalocyanine chemistry and their PDT applications as well as photochemistry","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":null,"pages":null},"PeriodicalIF":16.4000,"publicationDate":"2023-10-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Water-soluble phthalocyanine photosensitizers for photodynamic therapy\",\"authors\":\"İPEK ÖMEROĞLU, MAHMUT DURMUŞ\",\"doi\":\"10.55730/1300-0527.3583\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Photodynamic therapy (PDT) is based on a photochemical reaction that is started when a photosensitizing process is activated by the light and results in the death of tumor cells. Solubility is crucial in PDT applications to investigate the physical and chemical characteristics of phthalocyanines, but, unfortunately, most phthalocyanines show limited solubility especially in water. To increase the solubility of phthalocyanines in polar solvents and water, ionic groups such as -SO3 - , -NR3 +, -COO- , and nonionic groups such as poly-oxy chains are frequently added to the peripheral or nonperipheral positions of the phthalocyanine framework. Since water-solubility and NIR-absorbing properties are essential for efficient PDT activation, studies have been focused on the synthesis of these types of phthalocyanine derivatives. This review focuses on the photophysical, photochemical, and some in vitro or in vivo studies of the recently published ionic and nonionic phthalocyanine-mediated photosensitizers carried out in the last five years. This review will have positive contributions to future studies on phthalocyanine chemistry and their PDT applications as well as photochemistry\",\"PeriodicalId\":1,\"journal\":{\"name\":\"Accounts of Chemical Research\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":16.4000,\"publicationDate\":\"2023-10-31\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Accounts of Chemical Research\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.55730/1300-0527.3583\",\"RegionNum\":1,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.55730/1300-0527.3583","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
Water-soluble phthalocyanine photosensitizers for photodynamic therapy
Photodynamic therapy (PDT) is based on a photochemical reaction that is started when a photosensitizing process is activated by the light and results in the death of tumor cells. Solubility is crucial in PDT applications to investigate the physical and chemical characteristics of phthalocyanines, but, unfortunately, most phthalocyanines show limited solubility especially in water. To increase the solubility of phthalocyanines in polar solvents and water, ionic groups such as -SO3 - , -NR3 +, -COO- , and nonionic groups such as poly-oxy chains are frequently added to the peripheral or nonperipheral positions of the phthalocyanine framework. Since water-solubility and NIR-absorbing properties are essential for efficient PDT activation, studies have been focused on the synthesis of these types of phthalocyanine derivatives. This review focuses on the photophysical, photochemical, and some in vitro or in vivo studies of the recently published ionic and nonionic phthalocyanine-mediated photosensitizers carried out in the last five years. This review will have positive contributions to future studies on phthalocyanine chemistry and their PDT applications as well as photochemistry
期刊介绍:
Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance.
Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.