{"title":"驻极体阳性抑制金黄色葡萄球菌生物膜的机制","authors":"Hongbao Wang, Hejuan Liang, Xin Guo, Jiajie Xu, Jian Jiang, Zhipeng Sun, Yuanyuan Liang","doi":"10.1049/nde2.12065","DOIUrl":null,"url":null,"abstract":"<p>Bacterial biofilm is an important factor in bacterial drug resistance. Recently, it has been proved that electret films can inhibit the bacterial biofilm, while its mechanism of action on biofilms is under further investigation. In this work, taking <i>Staphylococcus aureus</i> as an example, the inhibition of positive electret on bacterial biofilm was verified and its mechanism was explained. Two factors have been found to explain the inhibition mechanism of electret on bacterial biofilms. One is probably due to its inhibition of the expression of key genes related to bacterial biofilms induced by the electric field of positive electret, and the other is to prevent the aggregation of bacteria rather than the direct bactericidal effect. The conclusions are expected to be extended to other types of bacteria and expand the application of electrostatic materials in the field of biomedicine.</p>","PeriodicalId":36855,"journal":{"name":"IET Nanodielectrics","volume":null,"pages":null},"PeriodicalIF":3.8000,"publicationDate":"2023-10-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ietresearch.onlinelibrary.wiley.com/doi/epdf/10.1049/nde2.12065","citationCount":"0","resultStr":"{\"title\":\"Mechanism of positive electret inhibition of Staphylococcus aureus biofilms\",\"authors\":\"Hongbao Wang, Hejuan Liang, Xin Guo, Jiajie Xu, Jian Jiang, Zhipeng Sun, Yuanyuan Liang\",\"doi\":\"10.1049/nde2.12065\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Bacterial biofilm is an important factor in bacterial drug resistance. Recently, it has been proved that electret films can inhibit the bacterial biofilm, while its mechanism of action on biofilms is under further investigation. In this work, taking <i>Staphylococcus aureus</i> as an example, the inhibition of positive electret on bacterial biofilm was verified and its mechanism was explained. Two factors have been found to explain the inhibition mechanism of electret on bacterial biofilms. One is probably due to its inhibition of the expression of key genes related to bacterial biofilms induced by the electric field of positive electret, and the other is to prevent the aggregation of bacteria rather than the direct bactericidal effect. The conclusions are expected to be extended to other types of bacteria and expand the application of electrostatic materials in the field of biomedicine.</p>\",\"PeriodicalId\":36855,\"journal\":{\"name\":\"IET Nanodielectrics\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":3.8000,\"publicationDate\":\"2023-10-31\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://ietresearch.onlinelibrary.wiley.com/doi/epdf/10.1049/nde2.12065\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IET Nanodielectrics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1049/nde2.12065\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENGINEERING, ELECTRICAL & ELECTRONIC\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IET Nanodielectrics","FirstCategoryId":"1085","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1049/nde2.12065","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
Mechanism of positive electret inhibition of Staphylococcus aureus biofilms
Bacterial biofilm is an important factor in bacterial drug resistance. Recently, it has been proved that electret films can inhibit the bacterial biofilm, while its mechanism of action on biofilms is under further investigation. In this work, taking Staphylococcus aureus as an example, the inhibition of positive electret on bacterial biofilm was verified and its mechanism was explained. Two factors have been found to explain the inhibition mechanism of electret on bacterial biofilms. One is probably due to its inhibition of the expression of key genes related to bacterial biofilms induced by the electric field of positive electret, and the other is to prevent the aggregation of bacteria rather than the direct bactericidal effect. The conclusions are expected to be extended to other types of bacteria and expand the application of electrostatic materials in the field of biomedicine.