{"title":"无穷积与无穷和生成函数的对数凹性","authors":"Bernhard Heim, Markus Neuhauser","doi":"10.1142/s1793042124500192","DOIUrl":null,"url":null,"abstract":"We expand on the remark by Andrews on the importance of infinite sums and products in combinatorics. Let $\\{g_d(n)\\}_{d\\geq 0,n \\geq 1}$ be the double sequences $\\sigma_d(n)= \\sum_{\\ell \\mid n} \\ell^d$ or $\\psi_d(n)= n^d$. We associate double sequences $\\left\\{ p^{g_{d} }\\left( n\\right) \\right\\}$ and $\\left\\{ q^{g_{d} }\\left( n\\right) \\right\\} $, defined as the coefficients of \\begin{eqnarray*} \\sum_{n=0}^{\\infty} p^{g_{d} }\\left( n\\right) \\, t^{n}&:=&\\prod_{n=1}^{\\infty} \\left( 1 - t^{n} \\right)^{-\\frac{ \\sum_{\\ell \\mid n} \\mu(\\ell) \\, g_d(n/\\ell) }{n} }, \\\\ \\sum_{n=0}^{\\infty} q^{g_{d} }\\left( n\\right) \\, t^{n}&:=&\\frac{1}{1 - \\sum_{n=1}^{\\infty} g_d(n) \\, t^{n} }. \\end{eqnarray*} These coefficients are related to the number of partitions $\\mathrm{p}\\left( n\\right) = p^{\\sigma _{1 }}\\left ( n\\right) $, plane partitions $pp\\left( n\\right) = p^{\\sigma _{2 }}\\left( n\\right) $ of $n$, and Fibonacci numbers $F_{2n} = q^{\\psi _{1 }}\\left( n\\right) $. Let $n \\geq 3$ and let $n \\equiv 0 \\pmod{3}$. Then the coefficients are log-concave at $n$ for almost all $d$ in the exponential and geometric cases. The coefficients are not log-concave for almost all $d$ in both cases, if $n \\equiv 2 \\pmod{3}$. Let $n\\equiv 1 \\pmod{3}$. Then the log-concave property flips for almost all $d$.","PeriodicalId":14293,"journal":{"name":"International Journal of Number Theory","volume":"37 1","pages":"0"},"PeriodicalIF":0.5000,"publicationDate":"2023-10-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Log-Concavity of Infinite Product and Infinite Sum Generating Functions\",\"authors\":\"Bernhard Heim, Markus Neuhauser\",\"doi\":\"10.1142/s1793042124500192\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We expand on the remark by Andrews on the importance of infinite sums and products in combinatorics. Let $\\\\{g_d(n)\\\\}_{d\\\\geq 0,n \\\\geq 1}$ be the double sequences $\\\\sigma_d(n)= \\\\sum_{\\\\ell \\\\mid n} \\\\ell^d$ or $\\\\psi_d(n)= n^d$. We associate double sequences $\\\\left\\\\{ p^{g_{d} }\\\\left( n\\\\right) \\\\right\\\\}$ and $\\\\left\\\\{ q^{g_{d} }\\\\left( n\\\\right) \\\\right\\\\} $, defined as the coefficients of \\\\begin{eqnarray*} \\\\sum_{n=0}^{\\\\infty} p^{g_{d} }\\\\left( n\\\\right) \\\\, t^{n}&:=&\\\\prod_{n=1}^{\\\\infty} \\\\left( 1 - t^{n} \\\\right)^{-\\\\frac{ \\\\sum_{\\\\ell \\\\mid n} \\\\mu(\\\\ell) \\\\, g_d(n/\\\\ell) }{n} }, \\\\\\\\ \\\\sum_{n=0}^{\\\\infty} q^{g_{d} }\\\\left( n\\\\right) \\\\, t^{n}&:=&\\\\frac{1}{1 - \\\\sum_{n=1}^{\\\\infty} g_d(n) \\\\, t^{n} }. \\\\end{eqnarray*} These coefficients are related to the number of partitions $\\\\mathrm{p}\\\\left( n\\\\right) = p^{\\\\sigma _{1 }}\\\\left ( n\\\\right) $, plane partitions $pp\\\\left( n\\\\right) = p^{\\\\sigma _{2 }}\\\\left( n\\\\right) $ of $n$, and Fibonacci numbers $F_{2n} = q^{\\\\psi _{1 }}\\\\left( n\\\\right) $. Let $n \\\\geq 3$ and let $n \\\\equiv 0 \\\\pmod{3}$. Then the coefficients are log-concave at $n$ for almost all $d$ in the exponential and geometric cases. The coefficients are not log-concave for almost all $d$ in both cases, if $n \\\\equiv 2 \\\\pmod{3}$. Let $n\\\\equiv 1 \\\\pmod{3}$. Then the log-concave property flips for almost all $d$.\",\"PeriodicalId\":14293,\"journal\":{\"name\":\"International Journal of Number Theory\",\"volume\":\"37 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.5000,\"publicationDate\":\"2023-10-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Number Theory\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1142/s1793042124500192\",\"RegionNum\":3,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Number Theory","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1142/s1793042124500192","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS","Score":null,"Total":0}
Log-Concavity of Infinite Product and Infinite Sum Generating Functions
We expand on the remark by Andrews on the importance of infinite sums and products in combinatorics. Let $\{g_d(n)\}_{d\geq 0,n \geq 1}$ be the double sequences $\sigma_d(n)= \sum_{\ell \mid n} \ell^d$ or $\psi_d(n)= n^d$. We associate double sequences $\left\{ p^{g_{d} }\left( n\right) \right\}$ and $\left\{ q^{g_{d} }\left( n\right) \right\} $, defined as the coefficients of \begin{eqnarray*} \sum_{n=0}^{\infty} p^{g_{d} }\left( n\right) \, t^{n}&:=&\prod_{n=1}^{\infty} \left( 1 - t^{n} \right)^{-\frac{ \sum_{\ell \mid n} \mu(\ell) \, g_d(n/\ell) }{n} }, \\ \sum_{n=0}^{\infty} q^{g_{d} }\left( n\right) \, t^{n}&:=&\frac{1}{1 - \sum_{n=1}^{\infty} g_d(n) \, t^{n} }. \end{eqnarray*} These coefficients are related to the number of partitions $\mathrm{p}\left( n\right) = p^{\sigma _{1 }}\left ( n\right) $, plane partitions $pp\left( n\right) = p^{\sigma _{2 }}\left( n\right) $ of $n$, and Fibonacci numbers $F_{2n} = q^{\psi _{1 }}\left( n\right) $. Let $n \geq 3$ and let $n \equiv 0 \pmod{3}$. Then the coefficients are log-concave at $n$ for almost all $d$ in the exponential and geometric cases. The coefficients are not log-concave for almost all $d$ in both cases, if $n \equiv 2 \pmod{3}$. Let $n\equiv 1 \pmod{3}$. Then the log-concave property flips for almost all $d$.
期刊介绍:
This journal publishes original research papers and review articles on all areas of Number Theory, including elementary number theory, analytic number theory, algebraic number theory, arithmetic algebraic geometry, geometry of numbers, diophantine equations, diophantine approximation, transcendental number theory, probabilistic number theory, modular forms, multiplicative number theory, additive number theory, partitions, and computational number theory.