{"title":"代数数分母中的质数","authors":"Deepesh Singhal, Yuxin Lin","doi":"10.1142/s1793042124500167","DOIUrl":null,"url":null,"abstract":"Denote the set of algebraic numbers as $\\overline{\\mathbb{Q}}$ and the set of algebraic integers as $\\overline{\\mathbb{Z}}$. For $\\gamma\\in\\overline{\\mathbb{Q}}$, consider its irreducible polynomial in $\\mathbb{Z}[x]$, $F_{\\gamma}(x)=a_nx^n+\\dots+a_0$. Denote $e(\\gamma)=\\gcd(a_{n},a_{n-1},\\dots,a_1)$. Drungilas, Dubickas and Jankauskas show in a recent paper that $\\mathbb{Z}[\\gamma]\\cap \\mathbb{Q}=\\{\\alpha\\in\\mathbb{Q}\\mid \\{p\\mid v_p(\\alpha)<0\\}\\subseteq \\{p\\mid p|e(\\gamma)\\}\\}$. Given a number field $K$ and $\\gamma\\in\\overline{\\mathbb{Q}}$, we show that there is a subset $X(K,\\gamma)\\subseteq \\text{Spec}(\\mathcal{O}_K)$, for which $\\mathcal{O}_K[\\gamma]\\cap K=\\{\\alpha\\in K\\mid \\{\\mathfrak{p}\\mid v_{\\mathfrak{p}}(\\alpha)<0\\}\\subseteq X(K,\\gamma)\\}$. We prove that $\\mathcal{O}_K[\\gamma]\\cap K$ is a principal ideal domain if and only if the primes in $X(K,\\gamma)$ generate the class group of $\\mathcal{O}_K$. We show that given $\\gamma\\in \\overline{\\mathbb{Q}}$, we can find a finite set $S\\subseteq \\overline{\\mathbb{Z}}$, such that for every number field $K$, we have $X(K,\\gamma)=\\{\\mathfrak{p}\\in\\text{Spec}(\\mathcal{O}_K)\\mid \\mathfrak{p}\\cap S\\neq \\emptyset\\}$. We study how this set $S$ relates to the ring $\\overline{\\mathbb{Z}}[\\gamma]$ and the ideal $\\mathfrak{D}_{\\gamma}=\\{a\\in\\overline{\\mathbb{Z}}\\mid a\\gamma\\in\\overline{\\mathbb{Z}}\\}$ of $\\overline{\\mathbb{Z}}$. We also show that $\\gamma_1,\\gamma_2\\in \\overline{\\mathbb{Q}}$ satisfy $\\mathfrak{D}_{\\gamma_1}=\\mathfrak{D}_{\\gamma_2}$ if and only if $X(K,\\gamma_1)=X(K,\\gamma_2)$ for all number fields $K$.","PeriodicalId":14293,"journal":{"name":"International Journal of Number Theory","volume":"35 1","pages":"0"},"PeriodicalIF":0.5000,"publicationDate":"2023-10-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Primes in denominators of algebraic numbers\",\"authors\":\"Deepesh Singhal, Yuxin Lin\",\"doi\":\"10.1142/s1793042124500167\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Denote the set of algebraic numbers as $\\\\overline{\\\\mathbb{Q}}$ and the set of algebraic integers as $\\\\overline{\\\\mathbb{Z}}$. For $\\\\gamma\\\\in\\\\overline{\\\\mathbb{Q}}$, consider its irreducible polynomial in $\\\\mathbb{Z}[x]$, $F_{\\\\gamma}(x)=a_nx^n+\\\\dots+a_0$. Denote $e(\\\\gamma)=\\\\gcd(a_{n},a_{n-1},\\\\dots,a_1)$. Drungilas, Dubickas and Jankauskas show in a recent paper that $\\\\mathbb{Z}[\\\\gamma]\\\\cap \\\\mathbb{Q}=\\\\{\\\\alpha\\\\in\\\\mathbb{Q}\\\\mid \\\\{p\\\\mid v_p(\\\\alpha)<0\\\\}\\\\subseteq \\\\{p\\\\mid p|e(\\\\gamma)\\\\}\\\\}$. Given a number field $K$ and $\\\\gamma\\\\in\\\\overline{\\\\mathbb{Q}}$, we show that there is a subset $X(K,\\\\gamma)\\\\subseteq \\\\text{Spec}(\\\\mathcal{O}_K)$, for which $\\\\mathcal{O}_K[\\\\gamma]\\\\cap K=\\\\{\\\\alpha\\\\in K\\\\mid \\\\{\\\\mathfrak{p}\\\\mid v_{\\\\mathfrak{p}}(\\\\alpha)<0\\\\}\\\\subseteq X(K,\\\\gamma)\\\\}$. We prove that $\\\\mathcal{O}_K[\\\\gamma]\\\\cap K$ is a principal ideal domain if and only if the primes in $X(K,\\\\gamma)$ generate the class group of $\\\\mathcal{O}_K$. We show that given $\\\\gamma\\\\in \\\\overline{\\\\mathbb{Q}}$, we can find a finite set $S\\\\subseteq \\\\overline{\\\\mathbb{Z}}$, such that for every number field $K$, we have $X(K,\\\\gamma)=\\\\{\\\\mathfrak{p}\\\\in\\\\text{Spec}(\\\\mathcal{O}_K)\\\\mid \\\\mathfrak{p}\\\\cap S\\\\neq \\\\emptyset\\\\}$. We study how this set $S$ relates to the ring $\\\\overline{\\\\mathbb{Z}}[\\\\gamma]$ and the ideal $\\\\mathfrak{D}_{\\\\gamma}=\\\\{a\\\\in\\\\overline{\\\\mathbb{Z}}\\\\mid a\\\\gamma\\\\in\\\\overline{\\\\mathbb{Z}}\\\\}$ of $\\\\overline{\\\\mathbb{Z}}$. We also show that $\\\\gamma_1,\\\\gamma_2\\\\in \\\\overline{\\\\mathbb{Q}}$ satisfy $\\\\mathfrak{D}_{\\\\gamma_1}=\\\\mathfrak{D}_{\\\\gamma_2}$ if and only if $X(K,\\\\gamma_1)=X(K,\\\\gamma_2)$ for all number fields $K$.\",\"PeriodicalId\":14293,\"journal\":{\"name\":\"International Journal of Number Theory\",\"volume\":\"35 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.5000,\"publicationDate\":\"2023-10-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Number Theory\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1142/s1793042124500167\",\"RegionNum\":3,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Number Theory","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1142/s1793042124500167","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS","Score":null,"Total":0}
Denote the set of algebraic numbers as $\overline{\mathbb{Q}}$ and the set of algebraic integers as $\overline{\mathbb{Z}}$. For $\gamma\in\overline{\mathbb{Q}}$, consider its irreducible polynomial in $\mathbb{Z}[x]$, $F_{\gamma}(x)=a_nx^n+\dots+a_0$. Denote $e(\gamma)=\gcd(a_{n},a_{n-1},\dots,a_1)$. Drungilas, Dubickas and Jankauskas show in a recent paper that $\mathbb{Z}[\gamma]\cap \mathbb{Q}=\{\alpha\in\mathbb{Q}\mid \{p\mid v_p(\alpha)<0\}\subseteq \{p\mid p|e(\gamma)\}\}$. Given a number field $K$ and $\gamma\in\overline{\mathbb{Q}}$, we show that there is a subset $X(K,\gamma)\subseteq \text{Spec}(\mathcal{O}_K)$, for which $\mathcal{O}_K[\gamma]\cap K=\{\alpha\in K\mid \{\mathfrak{p}\mid v_{\mathfrak{p}}(\alpha)<0\}\subseteq X(K,\gamma)\}$. We prove that $\mathcal{O}_K[\gamma]\cap K$ is a principal ideal domain if and only if the primes in $X(K,\gamma)$ generate the class group of $\mathcal{O}_K$. We show that given $\gamma\in \overline{\mathbb{Q}}$, we can find a finite set $S\subseteq \overline{\mathbb{Z}}$, such that for every number field $K$, we have $X(K,\gamma)=\{\mathfrak{p}\in\text{Spec}(\mathcal{O}_K)\mid \mathfrak{p}\cap S\neq \emptyset\}$. We study how this set $S$ relates to the ring $\overline{\mathbb{Z}}[\gamma]$ and the ideal $\mathfrak{D}_{\gamma}=\{a\in\overline{\mathbb{Z}}\mid a\gamma\in\overline{\mathbb{Z}}\}$ of $\overline{\mathbb{Z}}$. We also show that $\gamma_1,\gamma_2\in \overline{\mathbb{Q}}$ satisfy $\mathfrak{D}_{\gamma_1}=\mathfrak{D}_{\gamma_2}$ if and only if $X(K,\gamma_1)=X(K,\gamma_2)$ for all number fields $K$.
期刊介绍:
This journal publishes original research papers and review articles on all areas of Number Theory, including elementary number theory, analytic number theory, algebraic number theory, arithmetic algebraic geometry, geometry of numbers, diophantine equations, diophantine approximation, transcendental number theory, probabilistic number theory, modular forms, multiplicative number theory, additive number theory, partitions, and computational number theory.