{"title":"Rank-Metric晶格","authors":"Giuseppe Cotardo, Alberto Ravagnani","doi":"10.37236/11373","DOIUrl":null,"url":null,"abstract":"We introduce the class of rank-metric geometric lattices and initiate the study of their structural properties. Rank-metric lattices can be seen as the $q$-analogues of higher-weight Dowling lattices, defined by Dowling himself in 1971. We fully characterize the supersolvable rank-metric lattices and compute their characteristic polynomials. We then concentrate on small rank-metric lattices whose characteristic polynomial we cannot compute, and provide a formula for them under a polynomiality assumption on their Whitney numbers of the first kind. The proof relies on computational results and on the theory of vector rank-metric codes, which we review in this paper from the perspective of rank-metric lattices. More precisely, we introduce the notion of lattice-rank weights of a rank-metric code and investigate their properties as combinatorial invariants and as code distinguishers for inequivalent codes.","PeriodicalId":11515,"journal":{"name":"Electronic Journal of Combinatorics","volume":"4 1","pages":"0"},"PeriodicalIF":0.7000,"publicationDate":"2023-01-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Rank-Metric Lattices\",\"authors\":\"Giuseppe Cotardo, Alberto Ravagnani\",\"doi\":\"10.37236/11373\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We introduce the class of rank-metric geometric lattices and initiate the study of their structural properties. Rank-metric lattices can be seen as the $q$-analogues of higher-weight Dowling lattices, defined by Dowling himself in 1971. We fully characterize the supersolvable rank-metric lattices and compute their characteristic polynomials. We then concentrate on small rank-metric lattices whose characteristic polynomial we cannot compute, and provide a formula for them under a polynomiality assumption on their Whitney numbers of the first kind. The proof relies on computational results and on the theory of vector rank-metric codes, which we review in this paper from the perspective of rank-metric lattices. More precisely, we introduce the notion of lattice-rank weights of a rank-metric code and investigate their properties as combinatorial invariants and as code distinguishers for inequivalent codes.\",\"PeriodicalId\":11515,\"journal\":{\"name\":\"Electronic Journal of Combinatorics\",\"volume\":\"4 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.7000,\"publicationDate\":\"2023-01-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Electronic Journal of Combinatorics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.37236/11373\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Electronic Journal of Combinatorics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.37236/11373","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
We introduce the class of rank-metric geometric lattices and initiate the study of their structural properties. Rank-metric lattices can be seen as the $q$-analogues of higher-weight Dowling lattices, defined by Dowling himself in 1971. We fully characterize the supersolvable rank-metric lattices and compute their characteristic polynomials. We then concentrate on small rank-metric lattices whose characteristic polynomial we cannot compute, and provide a formula for them under a polynomiality assumption on their Whitney numbers of the first kind. The proof relies on computational results and on the theory of vector rank-metric codes, which we review in this paper from the perspective of rank-metric lattices. More precisely, we introduce the notion of lattice-rank weights of a rank-metric code and investigate their properties as combinatorial invariants and as code distinguishers for inequivalent codes.
期刊介绍:
The Electronic Journal of Combinatorics (E-JC) is a fully-refereed electronic journal with very high standards, publishing papers of substantial content and interest in all branches of discrete mathematics, including combinatorics, graph theory, and algorithms for combinatorial problems.