三邻域引导渗滤下网格和环形中的最小致死集

IF 1 3区 数学 Q1 MATHEMATICS
Fabricio Benevides , Jean-Claude Bermond , Hicham Lesfari , Nicolas Nisse
{"title":"三邻域引导渗滤下网格和环形中的最小致死集","authors":"Fabricio Benevides ,&nbsp;Jean-Claude Bermond ,&nbsp;Hicham Lesfari ,&nbsp;Nicolas Nisse","doi":"10.1016/j.ejc.2023.103801","DOIUrl":null,"url":null,"abstract":"<div><p>Let <span><math><mrow><mi>r</mi><mo>≥</mo><mn>1</mn></mrow></math></span><span> be any non negative integer and let </span><span><math><mrow><mi>G</mi><mo>=</mo><mrow><mo>(</mo><mi>V</mi><mo>,</mo><mi>E</mi><mo>)</mo></mrow></mrow></math></span> be any undirected graph in which a subset <span><math><mrow><mi>D</mi><mo>⊆</mo><mi>V</mi></mrow></math></span> of vertices are initially <em>infected</em>. We consider the process in which, at every step, each non-infected vertex with at least <span><math><mi>r</mi></math></span> infected neighbours becomes infected and an infected vertex never becomes non-infected. The problem consists in determining the minimum size <span><math><mrow><msub><mrow><mi>s</mi></mrow><mrow><mi>r</mi></mrow></msub><mrow><mo>(</mo><mi>G</mi><mo>)</mo></mrow></mrow></math></span> of an initially infected vertices set <span><math><mi>D</mi></math></span> that eventually infects the whole graph <span><math><mi>G</mi></math></span>. This problem is closely related to cellular automata, to percolation problems and to the Game of Life studied by John Conway. Note that <span><math><mrow><msub><mrow><mi>s</mi></mrow><mrow><mn>1</mn></mrow></msub><mrow><mo>(</mo><mi>G</mi><mo>)</mo></mrow><mo>=</mo><mn>1</mn></mrow></math></span><span> for any connected graph </span><span><math><mi>G</mi></math></span>. The case when <span><math><mi>G</mi></math></span> is the <span><math><mrow><mi>n</mi><mo>×</mo><mi>n</mi></mrow></math></span> grid, <span><math><msub><mrow><mi>G</mi></mrow><mrow><mi>n</mi><mo>×</mo><mi>n</mi></mrow></msub></math></span>, and <span><math><mrow><mi>r</mi><mo>=</mo><mn>2</mn></mrow></math></span> is well known and appears in many puzzle books, in particular due to the elegant proof that shows that <span><math><mrow><msub><mrow><mi>s</mi></mrow><mrow><mn>2</mn></mrow></msub><mrow><mo>(</mo><msub><mrow><mi>G</mi></mrow><mrow><mi>n</mi><mo>×</mo><mi>n</mi></mrow></msub><mo>)</mo></mrow><mo>=</mo><mi>n</mi></mrow></math></span> for all <span><math><mrow><mi>n</mi><mo>∈</mo><mi>N</mi></mrow></math></span>. We study the cases of square grids, <span><math><msub><mrow><mi>G</mi></mrow><mrow><mi>n</mi><mo>×</mo><mi>n</mi></mrow></msub></math></span>, and tori, <span><math><msub><mrow><mi>T</mi></mrow><mrow><mi>n</mi><mo>×</mo><mi>n</mi></mrow></msub></math></span>, when <span><math><mrow><mi>r</mi><mo>∈</mo><mrow><mo>{</mo><mn>3</mn><mo>,</mo><mn>4</mn><mo>}</mo></mrow></mrow></math></span>. We show that <span><math><mrow><msub><mrow><mi>s</mi></mrow><mrow><mn>3</mn></mrow></msub><mrow><mo>(</mo><msub><mrow><mi>G</mi></mrow><mrow><mi>n</mi><mo>×</mo><mi>n</mi></mrow></msub><mo>)</mo></mrow><mo>=</mo><mrow><mo>⌈</mo><mfrac><mrow><msup><mrow><mi>n</mi></mrow><mrow><mn>2</mn></mrow></msup><mo>+</mo><mn>2</mn><mi>n</mi><mo>+</mo><mn>4</mn></mrow><mrow><mn>3</mn></mrow></mfrac><mo>⌉</mo></mrow></mrow></math></span> for every <span><math><mi>n</mi></math></span> even and that <span><math><mrow><mrow><mo>⌈</mo><mfrac><mrow><msup><mrow><mi>n</mi></mrow><mrow><mn>2</mn></mrow></msup><mo>+</mo><mn>2</mn><mi>n</mi></mrow><mrow><mn>3</mn></mrow></mfrac><mo>⌉</mo></mrow><mo>≤</mo><msub><mrow><mi>s</mi></mrow><mrow><mn>3</mn></mrow></msub><mrow><mo>(</mo><msub><mrow><mi>G</mi></mrow><mrow><mi>n</mi><mo>×</mo><mi>n</mi></mrow></msub><mo>)</mo></mrow><mspace></mspace><mo>≤</mo><mspace></mspace><mrow><mo>⌈</mo><mfrac><mrow><msup><mrow><mi>n</mi></mrow><mrow><mn>2</mn></mrow></msup><mo>+</mo><mn>2</mn><mi>n</mi></mrow><mrow><mn>3</mn></mrow></mfrac><mo>⌉</mo></mrow><mo>+</mo><mn>1</mn></mrow></math></span> for any <span><math><mi>n</mi></math></span> odd. When <span><math><mi>n</mi></math></span> is odd, we show that both bounds are reached, namely <span><math><mrow><msub><mrow><mi>s</mi></mrow><mrow><mn>3</mn></mrow></msub><mrow><mo>(</mo><msub><mrow><mi>G</mi></mrow><mrow><mi>n</mi><mo>×</mo><mi>n</mi></mrow></msub><mo>)</mo></mrow><mo>=</mo><mrow><mo>⌈</mo><mfrac><mrow><msup><mrow><mi>n</mi></mrow><mrow><mn>2</mn></mrow></msup><mo>+</mo><mn>2</mn><mi>n</mi></mrow><mrow><mn>3</mn></mrow></mfrac><mo>⌉</mo></mrow></mrow></math></span> if <span><math><mrow><mi>n</mi><mo>≡</mo><mn>5</mn><mspace></mspace><mrow><mo>(</mo><mo>mod</mo><mspace></mspace><mn>6</mn><mo>)</mo></mrow></mrow></math></span> or <span><math><mrow><mi>n</mi><mo>=</mo><msup><mrow><mn>2</mn></mrow><mrow><mi>p</mi></mrow></msup><mo>−</mo><mn>1</mn></mrow></math></span> for any <span><math><mrow><mi>p</mi><mo>∈</mo><msup><mrow><mi>N</mi></mrow><mrow><mo>∗</mo></mrow></msup></mrow></math></span>, and <span><math><mrow><msub><mrow><mi>s</mi></mrow><mrow><mn>3</mn></mrow></msub><mrow><mo>(</mo><msub><mrow><mi>G</mi></mrow><mrow><mi>n</mi><mo>×</mo><mi>n</mi></mrow></msub><mo>)</mo></mrow><mo>=</mo><mrow><mo>⌈</mo><mfrac><mrow><msup><mrow><mi>n</mi></mrow><mrow><mn>2</mn></mrow></msup><mo>+</mo><mn>2</mn><mi>n</mi></mrow><mrow><mn>3</mn></mrow></mfrac><mo>⌉</mo></mrow><mo>+</mo><mn>1</mn></mrow></math></span> if <span><math><mrow><mi>n</mi><mo>∈</mo><mrow><mo>{</mo><mn>9</mn><mo>,</mo><mn>13</mn><mo>}</mo></mrow></mrow></math></span>. Finally, for all <span><math><mrow><mi>n</mi><mo>∈</mo><mi>N</mi></mrow></math></span>, we give the exact expression of <span><math><mrow><msub><mrow><mi>s</mi></mrow><mrow><mn>3</mn></mrow></msub><mrow><mo>(</mo><msub><mrow><mi>T</mi></mrow><mrow><mi>n</mi><mo>×</mo><mi>n</mi></mrow></msub><mo>)</mo></mrow></mrow></math></span>.</p></div>","PeriodicalId":50490,"journal":{"name":"European Journal of Combinatorics","volume":null,"pages":null},"PeriodicalIF":1.0000,"publicationDate":"2024-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Minimum lethal sets in grids and tori under 3-neighbour bootstrap percolation\",\"authors\":\"Fabricio Benevides ,&nbsp;Jean-Claude Bermond ,&nbsp;Hicham Lesfari ,&nbsp;Nicolas Nisse\",\"doi\":\"10.1016/j.ejc.2023.103801\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Let <span><math><mrow><mi>r</mi><mo>≥</mo><mn>1</mn></mrow></math></span><span> be any non negative integer and let </span><span><math><mrow><mi>G</mi><mo>=</mo><mrow><mo>(</mo><mi>V</mi><mo>,</mo><mi>E</mi><mo>)</mo></mrow></mrow></math></span> be any undirected graph in which a subset <span><math><mrow><mi>D</mi><mo>⊆</mo><mi>V</mi></mrow></math></span> of vertices are initially <em>infected</em>. We consider the process in which, at every step, each non-infected vertex with at least <span><math><mi>r</mi></math></span> infected neighbours becomes infected and an infected vertex never becomes non-infected. The problem consists in determining the minimum size <span><math><mrow><msub><mrow><mi>s</mi></mrow><mrow><mi>r</mi></mrow></msub><mrow><mo>(</mo><mi>G</mi><mo>)</mo></mrow></mrow></math></span> of an initially infected vertices set <span><math><mi>D</mi></math></span> that eventually infects the whole graph <span><math><mi>G</mi></math></span>. This problem is closely related to cellular automata, to percolation problems and to the Game of Life studied by John Conway. Note that <span><math><mrow><msub><mrow><mi>s</mi></mrow><mrow><mn>1</mn></mrow></msub><mrow><mo>(</mo><mi>G</mi><mo>)</mo></mrow><mo>=</mo><mn>1</mn></mrow></math></span><span> for any connected graph </span><span><math><mi>G</mi></math></span>. The case when <span><math><mi>G</mi></math></span> is the <span><math><mrow><mi>n</mi><mo>×</mo><mi>n</mi></mrow></math></span> grid, <span><math><msub><mrow><mi>G</mi></mrow><mrow><mi>n</mi><mo>×</mo><mi>n</mi></mrow></msub></math></span>, and <span><math><mrow><mi>r</mi><mo>=</mo><mn>2</mn></mrow></math></span> is well known and appears in many puzzle books, in particular due to the elegant proof that shows that <span><math><mrow><msub><mrow><mi>s</mi></mrow><mrow><mn>2</mn></mrow></msub><mrow><mo>(</mo><msub><mrow><mi>G</mi></mrow><mrow><mi>n</mi><mo>×</mo><mi>n</mi></mrow></msub><mo>)</mo></mrow><mo>=</mo><mi>n</mi></mrow></math></span> for all <span><math><mrow><mi>n</mi><mo>∈</mo><mi>N</mi></mrow></math></span>. We study the cases of square grids, <span><math><msub><mrow><mi>G</mi></mrow><mrow><mi>n</mi><mo>×</mo><mi>n</mi></mrow></msub></math></span>, and tori, <span><math><msub><mrow><mi>T</mi></mrow><mrow><mi>n</mi><mo>×</mo><mi>n</mi></mrow></msub></math></span>, when <span><math><mrow><mi>r</mi><mo>∈</mo><mrow><mo>{</mo><mn>3</mn><mo>,</mo><mn>4</mn><mo>}</mo></mrow></mrow></math></span>. We show that <span><math><mrow><msub><mrow><mi>s</mi></mrow><mrow><mn>3</mn></mrow></msub><mrow><mo>(</mo><msub><mrow><mi>G</mi></mrow><mrow><mi>n</mi><mo>×</mo><mi>n</mi></mrow></msub><mo>)</mo></mrow><mo>=</mo><mrow><mo>⌈</mo><mfrac><mrow><msup><mrow><mi>n</mi></mrow><mrow><mn>2</mn></mrow></msup><mo>+</mo><mn>2</mn><mi>n</mi><mo>+</mo><mn>4</mn></mrow><mrow><mn>3</mn></mrow></mfrac><mo>⌉</mo></mrow></mrow></math></span> for every <span><math><mi>n</mi></math></span> even and that <span><math><mrow><mrow><mo>⌈</mo><mfrac><mrow><msup><mrow><mi>n</mi></mrow><mrow><mn>2</mn></mrow></msup><mo>+</mo><mn>2</mn><mi>n</mi></mrow><mrow><mn>3</mn></mrow></mfrac><mo>⌉</mo></mrow><mo>≤</mo><msub><mrow><mi>s</mi></mrow><mrow><mn>3</mn></mrow></msub><mrow><mo>(</mo><msub><mrow><mi>G</mi></mrow><mrow><mi>n</mi><mo>×</mo><mi>n</mi></mrow></msub><mo>)</mo></mrow><mspace></mspace><mo>≤</mo><mspace></mspace><mrow><mo>⌈</mo><mfrac><mrow><msup><mrow><mi>n</mi></mrow><mrow><mn>2</mn></mrow></msup><mo>+</mo><mn>2</mn><mi>n</mi></mrow><mrow><mn>3</mn></mrow></mfrac><mo>⌉</mo></mrow><mo>+</mo><mn>1</mn></mrow></math></span> for any <span><math><mi>n</mi></math></span> odd. When <span><math><mi>n</mi></math></span> is odd, we show that both bounds are reached, namely <span><math><mrow><msub><mrow><mi>s</mi></mrow><mrow><mn>3</mn></mrow></msub><mrow><mo>(</mo><msub><mrow><mi>G</mi></mrow><mrow><mi>n</mi><mo>×</mo><mi>n</mi></mrow></msub><mo>)</mo></mrow><mo>=</mo><mrow><mo>⌈</mo><mfrac><mrow><msup><mrow><mi>n</mi></mrow><mrow><mn>2</mn></mrow></msup><mo>+</mo><mn>2</mn><mi>n</mi></mrow><mrow><mn>3</mn></mrow></mfrac><mo>⌉</mo></mrow></mrow></math></span> if <span><math><mrow><mi>n</mi><mo>≡</mo><mn>5</mn><mspace></mspace><mrow><mo>(</mo><mo>mod</mo><mspace></mspace><mn>6</mn><mo>)</mo></mrow></mrow></math></span> or <span><math><mrow><mi>n</mi><mo>=</mo><msup><mrow><mn>2</mn></mrow><mrow><mi>p</mi></mrow></msup><mo>−</mo><mn>1</mn></mrow></math></span> for any <span><math><mrow><mi>p</mi><mo>∈</mo><msup><mrow><mi>N</mi></mrow><mrow><mo>∗</mo></mrow></msup></mrow></math></span>, and <span><math><mrow><msub><mrow><mi>s</mi></mrow><mrow><mn>3</mn></mrow></msub><mrow><mo>(</mo><msub><mrow><mi>G</mi></mrow><mrow><mi>n</mi><mo>×</mo><mi>n</mi></mrow></msub><mo>)</mo></mrow><mo>=</mo><mrow><mo>⌈</mo><mfrac><mrow><msup><mrow><mi>n</mi></mrow><mrow><mn>2</mn></mrow></msup><mo>+</mo><mn>2</mn><mi>n</mi></mrow><mrow><mn>3</mn></mrow></mfrac><mo>⌉</mo></mrow><mo>+</mo><mn>1</mn></mrow></math></span> if <span><math><mrow><mi>n</mi><mo>∈</mo><mrow><mo>{</mo><mn>9</mn><mo>,</mo><mn>13</mn><mo>}</mo></mrow></mrow></math></span>. Finally, for all <span><math><mrow><mi>n</mi><mo>∈</mo><mi>N</mi></mrow></math></span>, we give the exact expression of <span><math><mrow><msub><mrow><mi>s</mi></mrow><mrow><mn>3</mn></mrow></msub><mrow><mo>(</mo><msub><mrow><mi>T</mi></mrow><mrow><mi>n</mi><mo>×</mo><mi>n</mi></mrow></msub><mo>)</mo></mrow></mrow></math></span>.</p></div>\",\"PeriodicalId\":50490,\"journal\":{\"name\":\"European Journal of Combinatorics\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.0000,\"publicationDate\":\"2024-06-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"European Journal of Combinatorics\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S019566982300118X\",\"RegionNum\":3,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"European Journal of Combinatorics","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S019566982300118X","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

设 r≥1 为任意非负整数,G=(V,E) 为任意无向图,其中顶点子集 D⊆V 最初被感染。我们考虑的过程是,在每一步中,每个非感染顶点的至少 r 个邻居都会被感染,而感染顶点永远不会变成非感染顶点。这一问题与细胞自动机、渗流问题以及约翰-康威(John Conway)研究的 "生命游戏"(Game of Life)密切相关。请注意,对于任何连通图 G,s1(G)=1。当 G 是 n×n 网格 Gn×n,且 r=2 时,s2(Gn×n)=n 的情况是众所周知的,并出现在许多谜题书中,特别是由于其优雅的证明,表明对于所有 n∈N,s2(Gn×n)=n。我们研究了当 r∈{3,4} 时方格 Gn×n 和环形 Tn×n 的情况。我们证明,对于偶数 n,s3(Gn×n)=⌈n2+2n+43⌉;对于奇数 n,⌈n2+2n3⌉≤s3(Gn×n)≤⌈n2+2n3⌉+1。当 n 为奇数时,我们证明两个边界都达到了,即如果 n≡5(mod6)或 n=2p-1 为任意 p∈N∗ 时,s3(Gn×n)=⌈n2+2n3⌉+1;如果 n∈{9,13} 时,s3(Gn×n)=⌈n2+2n3⌉+1。最后,对于所有 n∈N,我们给出 s3(Tn×n)的精确表达式。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Minimum lethal sets in grids and tori under 3-neighbour bootstrap percolation

Let r1 be any non negative integer and let G=(V,E) be any undirected graph in which a subset DV of vertices are initially infected. We consider the process in which, at every step, each non-infected vertex with at least r infected neighbours becomes infected and an infected vertex never becomes non-infected. The problem consists in determining the minimum size sr(G) of an initially infected vertices set D that eventually infects the whole graph G. This problem is closely related to cellular automata, to percolation problems and to the Game of Life studied by John Conway. Note that s1(G)=1 for any connected graph G. The case when G is the n×n grid, Gn×n, and r=2 is well known and appears in many puzzle books, in particular due to the elegant proof that shows that s2(Gn×n)=n for all nN. We study the cases of square grids, Gn×n, and tori, Tn×n, when r{3,4}. We show that s3(Gn×n)=n2+2n+43 for every n even and that n2+2n3s3(Gn×n)n2+2n3+1 for any n odd. When n is odd, we show that both bounds are reached, namely s3(Gn×n)=n2+2n3 if n5(mod6) or n=2p1 for any pN, and s3(Gn×n)=n2+2n3+1 if n{9,13}. Finally, for all nN, we give the exact expression of s3(Tn×n).

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
2.10
自引率
10.00%
发文量
124
审稿时长
4-8 weeks
期刊介绍: The European Journal of Combinatorics is a high standard, international, bimonthly journal of pure mathematics, specializing in theories arising from combinatorial problems. The journal is primarily open to papers dealing with mathematical structures within combinatorics and/or establishing direct links between combinatorics and other branches of mathematics and the theories of computing. The journal includes full-length research papers on important topics.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信