{"title":"三邻域引导渗滤下网格和环形中的最小致死集","authors":"Fabricio Benevides , Jean-Claude Bermond , Hicham Lesfari , Nicolas Nisse","doi":"10.1016/j.ejc.2023.103801","DOIUrl":null,"url":null,"abstract":"<div><p>Let <span><math><mrow><mi>r</mi><mo>≥</mo><mn>1</mn></mrow></math></span><span> be any non negative integer and let </span><span><math><mrow><mi>G</mi><mo>=</mo><mrow><mo>(</mo><mi>V</mi><mo>,</mo><mi>E</mi><mo>)</mo></mrow></mrow></math></span> be any undirected graph in which a subset <span><math><mrow><mi>D</mi><mo>⊆</mo><mi>V</mi></mrow></math></span> of vertices are initially <em>infected</em>. We consider the process in which, at every step, each non-infected vertex with at least <span><math><mi>r</mi></math></span> infected neighbours becomes infected and an infected vertex never becomes non-infected. The problem consists in determining the minimum size <span><math><mrow><msub><mrow><mi>s</mi></mrow><mrow><mi>r</mi></mrow></msub><mrow><mo>(</mo><mi>G</mi><mo>)</mo></mrow></mrow></math></span> of an initially infected vertices set <span><math><mi>D</mi></math></span> that eventually infects the whole graph <span><math><mi>G</mi></math></span>. This problem is closely related to cellular automata, to percolation problems and to the Game of Life studied by John Conway. Note that <span><math><mrow><msub><mrow><mi>s</mi></mrow><mrow><mn>1</mn></mrow></msub><mrow><mo>(</mo><mi>G</mi><mo>)</mo></mrow><mo>=</mo><mn>1</mn></mrow></math></span><span> for any connected graph </span><span><math><mi>G</mi></math></span>. The case when <span><math><mi>G</mi></math></span> is the <span><math><mrow><mi>n</mi><mo>×</mo><mi>n</mi></mrow></math></span> grid, <span><math><msub><mrow><mi>G</mi></mrow><mrow><mi>n</mi><mo>×</mo><mi>n</mi></mrow></msub></math></span>, and <span><math><mrow><mi>r</mi><mo>=</mo><mn>2</mn></mrow></math></span> is well known and appears in many puzzle books, in particular due to the elegant proof that shows that <span><math><mrow><msub><mrow><mi>s</mi></mrow><mrow><mn>2</mn></mrow></msub><mrow><mo>(</mo><msub><mrow><mi>G</mi></mrow><mrow><mi>n</mi><mo>×</mo><mi>n</mi></mrow></msub><mo>)</mo></mrow><mo>=</mo><mi>n</mi></mrow></math></span> for all <span><math><mrow><mi>n</mi><mo>∈</mo><mi>N</mi></mrow></math></span>. We study the cases of square grids, <span><math><msub><mrow><mi>G</mi></mrow><mrow><mi>n</mi><mo>×</mo><mi>n</mi></mrow></msub></math></span>, and tori, <span><math><msub><mrow><mi>T</mi></mrow><mrow><mi>n</mi><mo>×</mo><mi>n</mi></mrow></msub></math></span>, when <span><math><mrow><mi>r</mi><mo>∈</mo><mrow><mo>{</mo><mn>3</mn><mo>,</mo><mn>4</mn><mo>}</mo></mrow></mrow></math></span>. We show that <span><math><mrow><msub><mrow><mi>s</mi></mrow><mrow><mn>3</mn></mrow></msub><mrow><mo>(</mo><msub><mrow><mi>G</mi></mrow><mrow><mi>n</mi><mo>×</mo><mi>n</mi></mrow></msub><mo>)</mo></mrow><mo>=</mo><mrow><mo>⌈</mo><mfrac><mrow><msup><mrow><mi>n</mi></mrow><mrow><mn>2</mn></mrow></msup><mo>+</mo><mn>2</mn><mi>n</mi><mo>+</mo><mn>4</mn></mrow><mrow><mn>3</mn></mrow></mfrac><mo>⌉</mo></mrow></mrow></math></span> for every <span><math><mi>n</mi></math></span> even and that <span><math><mrow><mrow><mo>⌈</mo><mfrac><mrow><msup><mrow><mi>n</mi></mrow><mrow><mn>2</mn></mrow></msup><mo>+</mo><mn>2</mn><mi>n</mi></mrow><mrow><mn>3</mn></mrow></mfrac><mo>⌉</mo></mrow><mo>≤</mo><msub><mrow><mi>s</mi></mrow><mrow><mn>3</mn></mrow></msub><mrow><mo>(</mo><msub><mrow><mi>G</mi></mrow><mrow><mi>n</mi><mo>×</mo><mi>n</mi></mrow></msub><mo>)</mo></mrow><mspace></mspace><mo>≤</mo><mspace></mspace><mrow><mo>⌈</mo><mfrac><mrow><msup><mrow><mi>n</mi></mrow><mrow><mn>2</mn></mrow></msup><mo>+</mo><mn>2</mn><mi>n</mi></mrow><mrow><mn>3</mn></mrow></mfrac><mo>⌉</mo></mrow><mo>+</mo><mn>1</mn></mrow></math></span> for any <span><math><mi>n</mi></math></span> odd. When <span><math><mi>n</mi></math></span> is odd, we show that both bounds are reached, namely <span><math><mrow><msub><mrow><mi>s</mi></mrow><mrow><mn>3</mn></mrow></msub><mrow><mo>(</mo><msub><mrow><mi>G</mi></mrow><mrow><mi>n</mi><mo>×</mo><mi>n</mi></mrow></msub><mo>)</mo></mrow><mo>=</mo><mrow><mo>⌈</mo><mfrac><mrow><msup><mrow><mi>n</mi></mrow><mrow><mn>2</mn></mrow></msup><mo>+</mo><mn>2</mn><mi>n</mi></mrow><mrow><mn>3</mn></mrow></mfrac><mo>⌉</mo></mrow></mrow></math></span> if <span><math><mrow><mi>n</mi><mo>≡</mo><mn>5</mn><mspace></mspace><mrow><mo>(</mo><mo>mod</mo><mspace></mspace><mn>6</mn><mo>)</mo></mrow></mrow></math></span> or <span><math><mrow><mi>n</mi><mo>=</mo><msup><mrow><mn>2</mn></mrow><mrow><mi>p</mi></mrow></msup><mo>−</mo><mn>1</mn></mrow></math></span> for any <span><math><mrow><mi>p</mi><mo>∈</mo><msup><mrow><mi>N</mi></mrow><mrow><mo>∗</mo></mrow></msup></mrow></math></span>, and <span><math><mrow><msub><mrow><mi>s</mi></mrow><mrow><mn>3</mn></mrow></msub><mrow><mo>(</mo><msub><mrow><mi>G</mi></mrow><mrow><mi>n</mi><mo>×</mo><mi>n</mi></mrow></msub><mo>)</mo></mrow><mo>=</mo><mrow><mo>⌈</mo><mfrac><mrow><msup><mrow><mi>n</mi></mrow><mrow><mn>2</mn></mrow></msup><mo>+</mo><mn>2</mn><mi>n</mi></mrow><mrow><mn>3</mn></mrow></mfrac><mo>⌉</mo></mrow><mo>+</mo><mn>1</mn></mrow></math></span> if <span><math><mrow><mi>n</mi><mo>∈</mo><mrow><mo>{</mo><mn>9</mn><mo>,</mo><mn>13</mn><mo>}</mo></mrow></mrow></math></span>. Finally, for all <span><math><mrow><mi>n</mi><mo>∈</mo><mi>N</mi></mrow></math></span>, we give the exact expression of <span><math><mrow><msub><mrow><mi>s</mi></mrow><mrow><mn>3</mn></mrow></msub><mrow><mo>(</mo><msub><mrow><mi>T</mi></mrow><mrow><mi>n</mi><mo>×</mo><mi>n</mi></mrow></msub><mo>)</mo></mrow></mrow></math></span>.</p></div>","PeriodicalId":50490,"journal":{"name":"European Journal of Combinatorics","volume":null,"pages":null},"PeriodicalIF":1.0000,"publicationDate":"2024-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Minimum lethal sets in grids and tori under 3-neighbour bootstrap percolation\",\"authors\":\"Fabricio Benevides , Jean-Claude Bermond , Hicham Lesfari , Nicolas Nisse\",\"doi\":\"10.1016/j.ejc.2023.103801\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Let <span><math><mrow><mi>r</mi><mo>≥</mo><mn>1</mn></mrow></math></span><span> be any non negative integer and let </span><span><math><mrow><mi>G</mi><mo>=</mo><mrow><mo>(</mo><mi>V</mi><mo>,</mo><mi>E</mi><mo>)</mo></mrow></mrow></math></span> be any undirected graph in which a subset <span><math><mrow><mi>D</mi><mo>⊆</mo><mi>V</mi></mrow></math></span> of vertices are initially <em>infected</em>. We consider the process in which, at every step, each non-infected vertex with at least <span><math><mi>r</mi></math></span> infected neighbours becomes infected and an infected vertex never becomes non-infected. The problem consists in determining the minimum size <span><math><mrow><msub><mrow><mi>s</mi></mrow><mrow><mi>r</mi></mrow></msub><mrow><mo>(</mo><mi>G</mi><mo>)</mo></mrow></mrow></math></span> of an initially infected vertices set <span><math><mi>D</mi></math></span> that eventually infects the whole graph <span><math><mi>G</mi></math></span>. This problem is closely related to cellular automata, to percolation problems and to the Game of Life studied by John Conway. Note that <span><math><mrow><msub><mrow><mi>s</mi></mrow><mrow><mn>1</mn></mrow></msub><mrow><mo>(</mo><mi>G</mi><mo>)</mo></mrow><mo>=</mo><mn>1</mn></mrow></math></span><span> for any connected graph </span><span><math><mi>G</mi></math></span>. The case when <span><math><mi>G</mi></math></span> is the <span><math><mrow><mi>n</mi><mo>×</mo><mi>n</mi></mrow></math></span> grid, <span><math><msub><mrow><mi>G</mi></mrow><mrow><mi>n</mi><mo>×</mo><mi>n</mi></mrow></msub></math></span>, and <span><math><mrow><mi>r</mi><mo>=</mo><mn>2</mn></mrow></math></span> is well known and appears in many puzzle books, in particular due to the elegant proof that shows that <span><math><mrow><msub><mrow><mi>s</mi></mrow><mrow><mn>2</mn></mrow></msub><mrow><mo>(</mo><msub><mrow><mi>G</mi></mrow><mrow><mi>n</mi><mo>×</mo><mi>n</mi></mrow></msub><mo>)</mo></mrow><mo>=</mo><mi>n</mi></mrow></math></span> for all <span><math><mrow><mi>n</mi><mo>∈</mo><mi>N</mi></mrow></math></span>. We study the cases of square grids, <span><math><msub><mrow><mi>G</mi></mrow><mrow><mi>n</mi><mo>×</mo><mi>n</mi></mrow></msub></math></span>, and tori, <span><math><msub><mrow><mi>T</mi></mrow><mrow><mi>n</mi><mo>×</mo><mi>n</mi></mrow></msub></math></span>, when <span><math><mrow><mi>r</mi><mo>∈</mo><mrow><mo>{</mo><mn>3</mn><mo>,</mo><mn>4</mn><mo>}</mo></mrow></mrow></math></span>. We show that <span><math><mrow><msub><mrow><mi>s</mi></mrow><mrow><mn>3</mn></mrow></msub><mrow><mo>(</mo><msub><mrow><mi>G</mi></mrow><mrow><mi>n</mi><mo>×</mo><mi>n</mi></mrow></msub><mo>)</mo></mrow><mo>=</mo><mrow><mo>⌈</mo><mfrac><mrow><msup><mrow><mi>n</mi></mrow><mrow><mn>2</mn></mrow></msup><mo>+</mo><mn>2</mn><mi>n</mi><mo>+</mo><mn>4</mn></mrow><mrow><mn>3</mn></mrow></mfrac><mo>⌉</mo></mrow></mrow></math></span> for every <span><math><mi>n</mi></math></span> even and that <span><math><mrow><mrow><mo>⌈</mo><mfrac><mrow><msup><mrow><mi>n</mi></mrow><mrow><mn>2</mn></mrow></msup><mo>+</mo><mn>2</mn><mi>n</mi></mrow><mrow><mn>3</mn></mrow></mfrac><mo>⌉</mo></mrow><mo>≤</mo><msub><mrow><mi>s</mi></mrow><mrow><mn>3</mn></mrow></msub><mrow><mo>(</mo><msub><mrow><mi>G</mi></mrow><mrow><mi>n</mi><mo>×</mo><mi>n</mi></mrow></msub><mo>)</mo></mrow><mspace></mspace><mo>≤</mo><mspace></mspace><mrow><mo>⌈</mo><mfrac><mrow><msup><mrow><mi>n</mi></mrow><mrow><mn>2</mn></mrow></msup><mo>+</mo><mn>2</mn><mi>n</mi></mrow><mrow><mn>3</mn></mrow></mfrac><mo>⌉</mo></mrow><mo>+</mo><mn>1</mn></mrow></math></span> for any <span><math><mi>n</mi></math></span> odd. When <span><math><mi>n</mi></math></span> is odd, we show that both bounds are reached, namely <span><math><mrow><msub><mrow><mi>s</mi></mrow><mrow><mn>3</mn></mrow></msub><mrow><mo>(</mo><msub><mrow><mi>G</mi></mrow><mrow><mi>n</mi><mo>×</mo><mi>n</mi></mrow></msub><mo>)</mo></mrow><mo>=</mo><mrow><mo>⌈</mo><mfrac><mrow><msup><mrow><mi>n</mi></mrow><mrow><mn>2</mn></mrow></msup><mo>+</mo><mn>2</mn><mi>n</mi></mrow><mrow><mn>3</mn></mrow></mfrac><mo>⌉</mo></mrow></mrow></math></span> if <span><math><mrow><mi>n</mi><mo>≡</mo><mn>5</mn><mspace></mspace><mrow><mo>(</mo><mo>mod</mo><mspace></mspace><mn>6</mn><mo>)</mo></mrow></mrow></math></span> or <span><math><mrow><mi>n</mi><mo>=</mo><msup><mrow><mn>2</mn></mrow><mrow><mi>p</mi></mrow></msup><mo>−</mo><mn>1</mn></mrow></math></span> for any <span><math><mrow><mi>p</mi><mo>∈</mo><msup><mrow><mi>N</mi></mrow><mrow><mo>∗</mo></mrow></msup></mrow></math></span>, and <span><math><mrow><msub><mrow><mi>s</mi></mrow><mrow><mn>3</mn></mrow></msub><mrow><mo>(</mo><msub><mrow><mi>G</mi></mrow><mrow><mi>n</mi><mo>×</mo><mi>n</mi></mrow></msub><mo>)</mo></mrow><mo>=</mo><mrow><mo>⌈</mo><mfrac><mrow><msup><mrow><mi>n</mi></mrow><mrow><mn>2</mn></mrow></msup><mo>+</mo><mn>2</mn><mi>n</mi></mrow><mrow><mn>3</mn></mrow></mfrac><mo>⌉</mo></mrow><mo>+</mo><mn>1</mn></mrow></math></span> if <span><math><mrow><mi>n</mi><mo>∈</mo><mrow><mo>{</mo><mn>9</mn><mo>,</mo><mn>13</mn><mo>}</mo></mrow></mrow></math></span>. Finally, for all <span><math><mrow><mi>n</mi><mo>∈</mo><mi>N</mi></mrow></math></span>, we give the exact expression of <span><math><mrow><msub><mrow><mi>s</mi></mrow><mrow><mn>3</mn></mrow></msub><mrow><mo>(</mo><msub><mrow><mi>T</mi></mrow><mrow><mi>n</mi><mo>×</mo><mi>n</mi></mrow></msub><mo>)</mo></mrow></mrow></math></span>.</p></div>\",\"PeriodicalId\":50490,\"journal\":{\"name\":\"European Journal of Combinatorics\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.0000,\"publicationDate\":\"2024-06-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"European Journal of Combinatorics\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S019566982300118X\",\"RegionNum\":3,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"European Journal of Combinatorics","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S019566982300118X","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
Minimum lethal sets in grids and tori under 3-neighbour bootstrap percolation
Let be any non negative integer and let be any undirected graph in which a subset of vertices are initially infected. We consider the process in which, at every step, each non-infected vertex with at least infected neighbours becomes infected and an infected vertex never becomes non-infected. The problem consists in determining the minimum size of an initially infected vertices set that eventually infects the whole graph . This problem is closely related to cellular automata, to percolation problems and to the Game of Life studied by John Conway. Note that for any connected graph . The case when is the grid, , and is well known and appears in many puzzle books, in particular due to the elegant proof that shows that for all . We study the cases of square grids, , and tori, , when . We show that for every even and that for any odd. When is odd, we show that both bounds are reached, namely if or for any , and if . Finally, for all , we give the exact expression of .
期刊介绍:
The European Journal of Combinatorics is a high standard, international, bimonthly journal of pure mathematics, specializing in theories arising from combinatorial problems. The journal is primarily open to papers dealing with mathematical structures within combinatorics and/or establishing direct links between combinatorics and other branches of mathematics and the theories of computing. The journal includes full-length research papers on important topics.