通过配体处理提高溶液处理空穴传输层的反向量子点发光二极管的性能

IF 4.8 4区 物理与天体物理 Q2 PHYSICS, CONDENSED MATTER
Depeng Li, Jingrui Ma, Wenbo Liu, Guohong Xiang, Xiangwei Qu, Siqi Jia, Mi Gu, Jiahao Wei, Pai Liu, Kai Wang, Xiaowei Sun
{"title":"通过配体处理提高溶液处理空穴传输层的反向量子点发光二极管的性能","authors":"Depeng Li, Jingrui Ma, Wenbo Liu, Guohong Xiang, Xiangwei Qu, Siqi Jia, Mi Gu, Jiahao Wei, Pai Liu, Kai Wang, Xiaowei Sun","doi":"10.1088/1674-4926/44/9/092603","DOIUrl":null,"url":null,"abstract":"Abstract The performance of inverted quantum-dot light-emitting diodes (QLEDs) based on solution-processed hole transport layers (HTLs) has been limited by the solvent-induced damage to the quantum dot (QD) layer during the spin-coating of the HTL. The lack of compatibility between the HTL's solvent and the QD layer results in an uneven surface, which negatively impacts the overall device performance. In this work, we develop a novel method to solve this problem by modifying the QD film with 1,8-diaminooctane to improve the resistance of the QD layer for the HTL’s solvent. The uniform QD layer leads the inverted red QLED device to achieve a low turn-on voltage of 1.8 V, a high maximum luminance of 105 500 cd/m 2 , and a remarkable maximum external quantum efficiency of 13.34%. This approach releases the considerable potential of HTL materials selection and offers a promising avenue for the development of high-performance inverted QLEDs.","PeriodicalId":17038,"journal":{"name":"Journal of Semiconductors","volume":"54 1","pages":"0"},"PeriodicalIF":4.8000,"publicationDate":"2023-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Enhancing performance of inverted quantum-dot light-emitting diodes based on a solution-processed hole transport layer via ligand treatment\",\"authors\":\"Depeng Li, Jingrui Ma, Wenbo Liu, Guohong Xiang, Xiangwei Qu, Siqi Jia, Mi Gu, Jiahao Wei, Pai Liu, Kai Wang, Xiaowei Sun\",\"doi\":\"10.1088/1674-4926/44/9/092603\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract The performance of inverted quantum-dot light-emitting diodes (QLEDs) based on solution-processed hole transport layers (HTLs) has been limited by the solvent-induced damage to the quantum dot (QD) layer during the spin-coating of the HTL. The lack of compatibility between the HTL's solvent and the QD layer results in an uneven surface, which negatively impacts the overall device performance. In this work, we develop a novel method to solve this problem by modifying the QD film with 1,8-diaminooctane to improve the resistance of the QD layer for the HTL’s solvent. The uniform QD layer leads the inverted red QLED device to achieve a low turn-on voltage of 1.8 V, a high maximum luminance of 105 500 cd/m 2 , and a remarkable maximum external quantum efficiency of 13.34%. This approach releases the considerable potential of HTL materials selection and offers a promising avenue for the development of high-performance inverted QLEDs.\",\"PeriodicalId\":17038,\"journal\":{\"name\":\"Journal of Semiconductors\",\"volume\":\"54 1\",\"pages\":\"0\"},\"PeriodicalIF\":4.8000,\"publicationDate\":\"2023-09-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Semiconductors\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1088/1674-4926/44/9/092603\",\"RegionNum\":4,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"PHYSICS, CONDENSED MATTER\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Semiconductors","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1088/1674-4926/44/9/092603","RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"PHYSICS, CONDENSED MATTER","Score":null,"Total":0}
引用次数: 1

摘要

摘要基于溶液处理空穴传输层(HTLs)的倒量子点发光二极管(qled)的性能一直受到溶液自旋涂层过程中溶剂对量子点(QD)层的损伤的限制。HTL的溶剂和QD层之间缺乏兼容性导致表面不均匀,这对设备的整体性能产生负面影响。在这项工作中,我们开发了一种新的方法来解决这个问题,即用1,8-二氨基辛烷修饰QD膜,以提高QD层对HTL溶剂的抗性。均匀的QD层使得倒红色QLED器件的导通电压低至1.8 V,最大亮度高达105 500 cd/ m2,最大外量子效率高达13.34%。这种方法释放了html材料选择的巨大潜力,为高性能倒转qled的发展提供了一条有前途的途径。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Enhancing performance of inverted quantum-dot light-emitting diodes based on a solution-processed hole transport layer via ligand treatment
Abstract The performance of inverted quantum-dot light-emitting diodes (QLEDs) based on solution-processed hole transport layers (HTLs) has been limited by the solvent-induced damage to the quantum dot (QD) layer during the spin-coating of the HTL. The lack of compatibility between the HTL's solvent and the QD layer results in an uneven surface, which negatively impacts the overall device performance. In this work, we develop a novel method to solve this problem by modifying the QD film with 1,8-diaminooctane to improve the resistance of the QD layer for the HTL’s solvent. The uniform QD layer leads the inverted red QLED device to achieve a low turn-on voltage of 1.8 V, a high maximum luminance of 105 500 cd/m 2 , and a remarkable maximum external quantum efficiency of 13.34%. This approach releases the considerable potential of HTL materials selection and offers a promising avenue for the development of high-performance inverted QLEDs.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Semiconductors
Journal of Semiconductors PHYSICS, CONDENSED MATTER-
CiteScore
6.70
自引率
9.80%
发文量
119
期刊介绍: Journal of Semiconductors publishes articles that emphasize semiconductor physics, materials, devices, circuits, and related technology.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信