Ramesh B. Koti, Mahabaleshwar S. Kakkasageri, Rajani S. Pujar
{"title":"用于在车联网中传播安全信息的人工神经网络","authors":"Ramesh B. Koti, Mahabaleshwar S. Kakkasageri, Rajani S. Pujar","doi":"10.4218/etrij.2022-0203","DOIUrl":null,"url":null,"abstract":"<p>In vehicular networks, diverse safety information can be shared among vehicles through internet connections. In vehicle-to-internet communications, vehicles on the road are wirelessly connected to different cloud networks, thereby accelerating safety information exchange. Onboard sensors acquire traffic-related information, and reliable intermediate nodes and network services, such as navigational facilities, allow to transmit safety information to distant target vehicles and stations. Using vehicle-to-network communications, we minimize delays and achieve high accuracy through consistent connectivity links. Our proposed approach uses intermediate nodes with two-hop separation to forward information. Target vehicle detection and routing of safety information are performed using machine learning algorithms. Compared with existing vehicle-to-internet solutions, our approach provides substantial improvements by reducing latency, packet drop, and overhead.</p>","PeriodicalId":11901,"journal":{"name":"ETRI Journal","volume":"45 6","pages":"1065-1078"},"PeriodicalIF":1.3000,"publicationDate":"2023-10-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.4218/etrij.2022-0203","citationCount":"0","resultStr":"{\"title\":\"Artificial neural network for safety information dissemination in vehicle-to-internet networks\",\"authors\":\"Ramesh B. Koti, Mahabaleshwar S. Kakkasageri, Rajani S. Pujar\",\"doi\":\"10.4218/etrij.2022-0203\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>In vehicular networks, diverse safety information can be shared among vehicles through internet connections. In vehicle-to-internet communications, vehicles on the road are wirelessly connected to different cloud networks, thereby accelerating safety information exchange. Onboard sensors acquire traffic-related information, and reliable intermediate nodes and network services, such as navigational facilities, allow to transmit safety information to distant target vehicles and stations. Using vehicle-to-network communications, we minimize delays and achieve high accuracy through consistent connectivity links. Our proposed approach uses intermediate nodes with two-hop separation to forward information. Target vehicle detection and routing of safety information are performed using machine learning algorithms. Compared with existing vehicle-to-internet solutions, our approach provides substantial improvements by reducing latency, packet drop, and overhead.</p>\",\"PeriodicalId\":11901,\"journal\":{\"name\":\"ETRI Journal\",\"volume\":\"45 6\",\"pages\":\"1065-1078\"},\"PeriodicalIF\":1.3000,\"publicationDate\":\"2023-10-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://onlinelibrary.wiley.com/doi/epdf/10.4218/etrij.2022-0203\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ETRI Journal\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.4218/etrij.2022-0203\",\"RegionNum\":4,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"ENGINEERING, ELECTRICAL & ELECTRONIC\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ETRI Journal","FirstCategoryId":"94","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.4218/etrij.2022-0203","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
Artificial neural network for safety information dissemination in vehicle-to-internet networks
In vehicular networks, diverse safety information can be shared among vehicles through internet connections. In vehicle-to-internet communications, vehicles on the road are wirelessly connected to different cloud networks, thereby accelerating safety information exchange. Onboard sensors acquire traffic-related information, and reliable intermediate nodes and network services, such as navigational facilities, allow to transmit safety information to distant target vehicles and stations. Using vehicle-to-network communications, we minimize delays and achieve high accuracy through consistent connectivity links. Our proposed approach uses intermediate nodes with two-hop separation to forward information. Target vehicle detection and routing of safety information are performed using machine learning algorithms. Compared with existing vehicle-to-internet solutions, our approach provides substantial improvements by reducing latency, packet drop, and overhead.
期刊介绍:
ETRI Journal is an international, peer-reviewed multidisciplinary journal published bimonthly in English. The main focus of the journal is to provide an open forum to exchange innovative ideas and technology in the fields of information, telecommunications, and electronics.
Key topics of interest include high-performance computing, big data analytics, cloud computing, multimedia technology, communication networks and services, wireless communications and mobile computing, material and component technology, as well as security.
With an international editorial committee and experts from around the world as reviewers, ETRI Journal publishes high-quality research papers on the latest and best developments from the global community.