将掺钼铂团簇组装成珊瑚状纳米结构,以实现高度增强的氧还原能力

IF 42.9 Q1 ELECTROCHEMISTRY
Linwei Zheng , Mang Niu , Tiantian Zeng , Xiaohang Ge , Yanrui Wang , Chun Xian Guo , Weiyong Yuan , Dapeng Cao , Lian Ying Zhang , Chang Ming Li
{"title":"将掺钼铂团簇组装成珊瑚状纳米结构,以实现高度增强的氧还原能力","authors":"Linwei Zheng ,&nbsp;Mang Niu ,&nbsp;Tiantian Zeng ,&nbsp;Xiaohang Ge ,&nbsp;Yanrui Wang ,&nbsp;Chun Xian Guo ,&nbsp;Weiyong Yuan ,&nbsp;Dapeng Cao ,&nbsp;Lian Ying Zhang ,&nbsp;Chang Ming Li","doi":"10.1016/j.esci.2023.100187","DOIUrl":null,"url":null,"abstract":"<div><p>Regulating the electronic and geometric structures of electrocatalysts is an effective strategy to boost their catalytic properties. Herein, a coral-like nanostructure is assembled with Mo-doped Pt clusters to form a highly active catalyst toward the oxygen reduction reaction (ORR). The advantages of a Mo-doped porous skeleton, grain boundaries, and MoOx species on the Pt cluster surfaces synergistically boost the electrocatalytic performance. This unique architecture delivers 3.5- and 2.8-fold higher mass and specific activities, respectively, than commercial Pt/C. Density functional theory calculations reveal that the Mo-doped Pt clusters have an optimized Pt–O bond length of 2.110 ​Å, which weakens the adsorption energy of the intermediate O∗ to yield great ORR activity. Moreover, the catalyst shows a decay in the half-wave potential of only 8 ​mV after 10,000 cycles of accelerated durability testing. The high stability arises from the increased dissociation energy of Pt atoms and the stable architecture of the coral-like structure of clusters.</p></div>","PeriodicalId":100489,"journal":{"name":"eScience","volume":"4 1","pages":"Article 100187"},"PeriodicalIF":42.9000,"publicationDate":"2024-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2667141723001271/pdfft?md5=20b1553d92da7308e0f22afccb94efce&pid=1-s2.0-S2667141723001271-main.pdf","citationCount":"0","resultStr":"{\"title\":\"Assembling molybdenum-doped platinum clusters into a coral-like nanostructure for highly enhanced oxygen reduction\",\"authors\":\"Linwei Zheng ,&nbsp;Mang Niu ,&nbsp;Tiantian Zeng ,&nbsp;Xiaohang Ge ,&nbsp;Yanrui Wang ,&nbsp;Chun Xian Guo ,&nbsp;Weiyong Yuan ,&nbsp;Dapeng Cao ,&nbsp;Lian Ying Zhang ,&nbsp;Chang Ming Li\",\"doi\":\"10.1016/j.esci.2023.100187\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Regulating the electronic and geometric structures of electrocatalysts is an effective strategy to boost their catalytic properties. Herein, a coral-like nanostructure is assembled with Mo-doped Pt clusters to form a highly active catalyst toward the oxygen reduction reaction (ORR). The advantages of a Mo-doped porous skeleton, grain boundaries, and MoOx species on the Pt cluster surfaces synergistically boost the electrocatalytic performance. This unique architecture delivers 3.5- and 2.8-fold higher mass and specific activities, respectively, than commercial Pt/C. Density functional theory calculations reveal that the Mo-doped Pt clusters have an optimized Pt–O bond length of 2.110 ​Å, which weakens the adsorption energy of the intermediate O∗ to yield great ORR activity. Moreover, the catalyst shows a decay in the half-wave potential of only 8 ​mV after 10,000 cycles of accelerated durability testing. The high stability arises from the increased dissociation energy of Pt atoms and the stable architecture of the coral-like structure of clusters.</p></div>\",\"PeriodicalId\":100489,\"journal\":{\"name\":\"eScience\",\"volume\":\"4 1\",\"pages\":\"Article 100187\"},\"PeriodicalIF\":42.9000,\"publicationDate\":\"2024-02-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.sciencedirect.com/science/article/pii/S2667141723001271/pdfft?md5=20b1553d92da7308e0f22afccb94efce&pid=1-s2.0-S2667141723001271-main.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"eScience\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2667141723001271\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ELECTROCHEMISTRY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"eScience","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2667141723001271","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ELECTROCHEMISTRY","Score":null,"Total":0}
引用次数: 0

摘要

调节电催化剂的电子和几何结构是提高其催化性能的有效策略。在这里,珊瑚状纳米结构与掺杂钼的铂团簇组装在一起,形成了一种高活性的氧还原反应(ORR)催化剂。掺杂钼的多孔骨架、晶界和铂团簇表面的氧化钼物种等优势协同提高了电催化性能。与商用 Pt/C 相比,这种独特的结构可使质量活性和比活性分别提高 3.5 倍和 2.8 倍。密度泛函理论计算显示,掺杂钼的铂团簇具有 2.110 Å 的优化铂-铂键长,这减弱了中间 O∗ 的吸附能,从而产生了极高的 ORR 活性。此外,在经过 10,000 次加速耐久性测试后,催化剂的半波电位衰减仅为 8 mV。高稳定性源于铂原子解离能的增加和珊瑚状团簇结构的稳定架构。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Assembling molybdenum-doped platinum clusters into a coral-like nanostructure for highly enhanced oxygen reduction

Assembling molybdenum-doped platinum clusters into a coral-like nanostructure for highly enhanced oxygen reduction

Assembling molybdenum-doped platinum clusters into a coral-like nanostructure for highly enhanced oxygen reduction

Regulating the electronic and geometric structures of electrocatalysts is an effective strategy to boost their catalytic properties. Herein, a coral-like nanostructure is assembled with Mo-doped Pt clusters to form a highly active catalyst toward the oxygen reduction reaction (ORR). The advantages of a Mo-doped porous skeleton, grain boundaries, and MoOx species on the Pt cluster surfaces synergistically boost the electrocatalytic performance. This unique architecture delivers 3.5- and 2.8-fold higher mass and specific activities, respectively, than commercial Pt/C. Density functional theory calculations reveal that the Mo-doped Pt clusters have an optimized Pt–O bond length of 2.110 ​Å, which weakens the adsorption energy of the intermediate O∗ to yield great ORR activity. Moreover, the catalyst shows a decay in the half-wave potential of only 8 ​mV after 10,000 cycles of accelerated durability testing. The high stability arises from the increased dissociation energy of Pt atoms and the stable architecture of the coral-like structure of clusters.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
33.70
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信