矩阵在pid上与理想类对应的相似类的表示

Pub Date : 2023-10-18 DOI:10.1017/s0017089523000356
Lucy Knight, Alexander Stasinski
{"title":"矩阵在pid上与理想类对应的相似类的表示","authors":"Lucy Knight, Alexander Stasinski","doi":"10.1017/s0017089523000356","DOIUrl":null,"url":null,"abstract":"Abstract For a principal ideal domain $A$ , the Latimer–MacDuffee correspondence sets up a bijection between the similarity classes of matrices in $\\textrm{M}_{n}(A)$ with irreducible characteristic polynomial $f(x)$ and the ideal classes of the order $A[x]/(f(x))$ . We prove that when $A[x]/(f(x))$ is maximal (i.e. integrally closed, i.e. a Dedekind domain), then every similarity class contains a representative that is, in a sense, close to being a companion matrix. The first step in the proof is to show that any similarity class corresponding to an ideal (not necessarily prime) of degree one contains a representative of the desired form. The second step is a previously unpublished result due to Lenstra that implies that when $A[x]/(f(x))$ is maximal, every ideal class contains an ideal of degree one.","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2023-10-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Representatives of similarity classes of matrices over PIDs corresponding to ideal classes\",\"authors\":\"Lucy Knight, Alexander Stasinski\",\"doi\":\"10.1017/s0017089523000356\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract For a principal ideal domain $A$ , the Latimer–MacDuffee correspondence sets up a bijection between the similarity classes of matrices in $\\\\textrm{M}_{n}(A)$ with irreducible characteristic polynomial $f(x)$ and the ideal classes of the order $A[x]/(f(x))$ . We prove that when $A[x]/(f(x))$ is maximal (i.e. integrally closed, i.e. a Dedekind domain), then every similarity class contains a representative that is, in a sense, close to being a companion matrix. The first step in the proof is to show that any similarity class corresponding to an ideal (not necessarily prime) of degree one contains a representative of the desired form. The second step is a previously unpublished result due to Lenstra that implies that when $A[x]/(f(x))$ is maximal, every ideal class contains an ideal of degree one.\",\"PeriodicalId\":0,\"journal\":{\"name\":\"\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0,\"publicationDate\":\"2023-10-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1017/s0017089523000356\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1017/s0017089523000356","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

摘要对于一个主理想域$ a $,利用Latimer-MacDuffee对应建立了$\textrm{M}_{n}(a)$中具有不可约特征多项式$f(x)$的矩阵的相似类与阶为$ a [x]/(f(x))$的理想类之间的双射。我们证明了当$A[x]/(f(x))$是极大的(即积分闭域,即Dedekind定义域),那么每一个相似类都包含一个代表,在某种意义上,它接近于一个伴矩阵。证明的第一步是证明任何与一阶理想(不一定是素数)相对应的相似类都包含一个期望形式的代表。第二步是先前未发表的Lenstra结果,该结果表明,当$ a [x]/(f(x))$是最大值时,每个理想类都包含一个1度的理想。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
分享
查看原文
Representatives of similarity classes of matrices over PIDs corresponding to ideal classes
Abstract For a principal ideal domain $A$ , the Latimer–MacDuffee correspondence sets up a bijection between the similarity classes of matrices in $\textrm{M}_{n}(A)$ with irreducible characteristic polynomial $f(x)$ and the ideal classes of the order $A[x]/(f(x))$ . We prove that when $A[x]/(f(x))$ is maximal (i.e. integrally closed, i.e. a Dedekind domain), then every similarity class contains a representative that is, in a sense, close to being a companion matrix. The first step in the proof is to show that any similarity class corresponding to an ideal (not necessarily prime) of degree one contains a representative of the desired form. The second step is a previously unpublished result due to Lenstra that implies that when $A[x]/(f(x))$ is maximal, every ideal class contains an ideal of degree one.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信