Charlene Princess Salvador Tolenada, Geraldine Budomo Dayrit
{"title":"医院废水产β-内酰胺酶大肠杆菌中blaCTXM-1、blaCTXM-9和blactm -1基因的存在","authors":"Charlene Princess Salvador Tolenada, Geraldine Budomo Dayrit","doi":"10.18585/inabj.v15i5.2531","DOIUrl":null,"url":null,"abstract":"BACKGROUND: Extended-spectrum β-lactamase-producing Escherichia coli (ESBL-EC) are selectively proliferated in the human gut, excreted through feces, and deposited through wastewater lines, with hospital wastewater acting as a major reservoir of antibiotic resistance genes and resistant bacteria, thus pose adverse effects to human health. This study aimed to determine the presence of blaCTXM-1, blaCTXM-9, blaTEM-1, and blaSHV-1 genes in ESBL-EC in wastewater from selected hospitals in Manila and Quezon City, the Philippines.METHODS: Influent and effluent in twelve hospital wastewater treatment plants were collected, screened for cefotaxime-resistant E. coli, and examined for the ESBL production through phenotypic characterization using conventional bacterial identification, disk diffusion method, and VITEK® 2 Compact system and genotypic identification of ESBL-EC blaCTXM-1, blaCTXM-9, blaTEM-1, blaSHV-1 genes using multiplex polymerase chain reaction (PCR).RESULTS: Conventional bacterial identification methods and the VITEK® 2 Compact system results showed that both influent and effluent samples were positive for ESBL-EC at 33.3% and 16.7%, respectively. Multiplex PCR results revealed that various E. coli isolates were of ESBL-EC blaCTXM-1, blaCTXM-9, and blaTEM-1 genes. Multi-drug resistance was observed among all ESBL-EC isolates with resistance being highest against ampicillin, cefuroxime, ceftazidime, ceftriaxone, cefepime, piperacillin, and aztreonam.CONCLUSION: As the study revealed the presence of ESBL-producing bacteria, efforts must be made to ensure the prudent antimicrobial use with possible emphasis on antibiotic rotation accompanied by intensified infection prevention and control in hospital settings.KEYWORDS: antimicrobial resistance, beta-lactams, blaCTXM, blaTEM, extended-spectrum beta-lactamase, E. coli, hospital wastewater","PeriodicalId":22516,"journal":{"name":"The Indonesian Biomedical Journal","volume":"64 2 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-10-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Presence of blaCTXM-1, blaCTXM-9, and blaTEM-1 Genes in Extended-spectrum β-lactamase-producing Escherichia coli Isolates from Hospital Wastewater\",\"authors\":\"Charlene Princess Salvador Tolenada, Geraldine Budomo Dayrit\",\"doi\":\"10.18585/inabj.v15i5.2531\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"BACKGROUND: Extended-spectrum β-lactamase-producing Escherichia coli (ESBL-EC) are selectively proliferated in the human gut, excreted through feces, and deposited through wastewater lines, with hospital wastewater acting as a major reservoir of antibiotic resistance genes and resistant bacteria, thus pose adverse effects to human health. This study aimed to determine the presence of blaCTXM-1, blaCTXM-9, blaTEM-1, and blaSHV-1 genes in ESBL-EC in wastewater from selected hospitals in Manila and Quezon City, the Philippines.METHODS: Influent and effluent in twelve hospital wastewater treatment plants were collected, screened for cefotaxime-resistant E. coli, and examined for the ESBL production through phenotypic characterization using conventional bacterial identification, disk diffusion method, and VITEK® 2 Compact system and genotypic identification of ESBL-EC blaCTXM-1, blaCTXM-9, blaTEM-1, blaSHV-1 genes using multiplex polymerase chain reaction (PCR).RESULTS: Conventional bacterial identification methods and the VITEK® 2 Compact system results showed that both influent and effluent samples were positive for ESBL-EC at 33.3% and 16.7%, respectively. Multiplex PCR results revealed that various E. coli isolates were of ESBL-EC blaCTXM-1, blaCTXM-9, and blaTEM-1 genes. Multi-drug resistance was observed among all ESBL-EC isolates with resistance being highest against ampicillin, cefuroxime, ceftazidime, ceftriaxone, cefepime, piperacillin, and aztreonam.CONCLUSION: As the study revealed the presence of ESBL-producing bacteria, efforts must be made to ensure the prudent antimicrobial use with possible emphasis on antibiotic rotation accompanied by intensified infection prevention and control in hospital settings.KEYWORDS: antimicrobial resistance, beta-lactams, blaCTXM, blaTEM, extended-spectrum beta-lactamase, E. coli, hospital wastewater\",\"PeriodicalId\":22516,\"journal\":{\"name\":\"The Indonesian Biomedical Journal\",\"volume\":\"64 2 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-10-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"The Indonesian Biomedical Journal\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.18585/inabj.v15i5.2531\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"The Indonesian Biomedical Journal","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.18585/inabj.v15i5.2531","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Presence of blaCTXM-1, blaCTXM-9, and blaTEM-1 Genes in Extended-spectrum β-lactamase-producing Escherichia coli Isolates from Hospital Wastewater
BACKGROUND: Extended-spectrum β-lactamase-producing Escherichia coli (ESBL-EC) are selectively proliferated in the human gut, excreted through feces, and deposited through wastewater lines, with hospital wastewater acting as a major reservoir of antibiotic resistance genes and resistant bacteria, thus pose adverse effects to human health. This study aimed to determine the presence of blaCTXM-1, blaCTXM-9, blaTEM-1, and blaSHV-1 genes in ESBL-EC in wastewater from selected hospitals in Manila and Quezon City, the Philippines.METHODS: Influent and effluent in twelve hospital wastewater treatment plants were collected, screened for cefotaxime-resistant E. coli, and examined for the ESBL production through phenotypic characterization using conventional bacterial identification, disk diffusion method, and VITEK® 2 Compact system and genotypic identification of ESBL-EC blaCTXM-1, blaCTXM-9, blaTEM-1, blaSHV-1 genes using multiplex polymerase chain reaction (PCR).RESULTS: Conventional bacterial identification methods and the VITEK® 2 Compact system results showed that both influent and effluent samples were positive for ESBL-EC at 33.3% and 16.7%, respectively. Multiplex PCR results revealed that various E. coli isolates were of ESBL-EC blaCTXM-1, blaCTXM-9, and blaTEM-1 genes. Multi-drug resistance was observed among all ESBL-EC isolates with resistance being highest against ampicillin, cefuroxime, ceftazidime, ceftriaxone, cefepime, piperacillin, and aztreonam.CONCLUSION: As the study revealed the presence of ESBL-producing bacteria, efforts must be made to ensure the prudent antimicrobial use with possible emphasis on antibiotic rotation accompanied by intensified infection prevention and control in hospital settings.KEYWORDS: antimicrobial resistance, beta-lactams, blaCTXM, blaTEM, extended-spectrum beta-lactamase, E. coli, hospital wastewater