Tim Huber, Chang Liu, James McLaughlin, Dongxi Ye, Miaodan Yuan, Sumeng Zhang
{"title":"关于CM - Eta商系数的消失性","authors":"Tim Huber, Chang Liu, James McLaughlin, Dongxi Ye, Miaodan Yuan, Sumeng Zhang","doi":"10.1017/s0013091523000627","DOIUrl":null,"url":null,"abstract":"Abstract This work characterizes the vanishing of the Fourier coefficients of all CM (Complex Multiplication) eta quotients. As consequences, we recover Serre’s characterization about that of $\\eta(12z)^{2}$ and recent results of Chang on the p th coefficients of $\\eta(4z)^{6}$ and $\\eta(6z)^{4}$ . Moreover, we generalize the results on the cases of weight 1 to the setting of binary quadratic forms.","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2023-10-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"On the Vanishing of the Coefficients of CM Eta Quotients\",\"authors\":\"Tim Huber, Chang Liu, James McLaughlin, Dongxi Ye, Miaodan Yuan, Sumeng Zhang\",\"doi\":\"10.1017/s0013091523000627\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract This work characterizes the vanishing of the Fourier coefficients of all CM (Complex Multiplication) eta quotients. As consequences, we recover Serre’s characterization about that of $\\\\eta(12z)^{2}$ and recent results of Chang on the p th coefficients of $\\\\eta(4z)^{6}$ and $\\\\eta(6z)^{4}$ . Moreover, we generalize the results on the cases of weight 1 to the setting of binary quadratic forms.\",\"PeriodicalId\":0,\"journal\":{\"name\":\"\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0,\"publicationDate\":\"2023-10-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1017/s0013091523000627\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1017/s0013091523000627","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
On the Vanishing of the Coefficients of CM Eta Quotients
Abstract This work characterizes the vanishing of the Fourier coefficients of all CM (Complex Multiplication) eta quotients. As consequences, we recover Serre’s characterization about that of $\eta(12z)^{2}$ and recent results of Chang on the p th coefficients of $\eta(4z)^{6}$ and $\eta(6z)^{4}$ . Moreover, we generalize the results on the cases of weight 1 to the setting of binary quadratic forms.