多列车系统中节能列车控制的最优解——算法设计

IF 3.6 2区 工程技术 Q2 TRANSPORTATION
Yu Rao , Xiaoyun Feng , Qingyuan Wang , Pengfei Sun
{"title":"多列车系统中节能列车控制的最优解——算法设计","authors":"Yu Rao ,&nbsp;Xiaoyun Feng ,&nbsp;Qingyuan Wang ,&nbsp;Pengfei Sun","doi":"10.1080/23249935.2023.2267685","DOIUrl":null,"url":null,"abstract":"<div><div>When a train travels in a multi-trains system, the power flow of other trains and the track grades make up the spatial–temporal area (STA) for the train. Finding the optimal solution for the energy-efficient train control problem in STA can help reduce the net energy consumption. This paper studies the analytic method to obtain the optimal solution. In Part 1, we propose an algorithm specifically designed for this problem. The underlying structure of the algorithm is the connection between three optimal states through the optimal feasible strategy. We propose an algebraic method to calculate the optimal feasible strategy and discuss how it intersects with the speed limit. In Part 2, we will discuss the optimality and uniqueness of the optimal feasible strategy. Case studies using data from a real freight railway line are given to demonstrate the effectiveness of the proposed algorithm.</div></div>","PeriodicalId":48871,"journal":{"name":"Transportmetrica A-Transport Science","volume":"21 2","pages":"Pages 1-29"},"PeriodicalIF":3.6000,"publicationDate":"2025-05-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"The optimal solution to the energy-efficient train control in a multi-trains system-part 1: the algorithm design\",\"authors\":\"Yu Rao ,&nbsp;Xiaoyun Feng ,&nbsp;Qingyuan Wang ,&nbsp;Pengfei Sun\",\"doi\":\"10.1080/23249935.2023.2267685\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>When a train travels in a multi-trains system, the power flow of other trains and the track grades make up the spatial–temporal area (STA) for the train. Finding the optimal solution for the energy-efficient train control problem in STA can help reduce the net energy consumption. This paper studies the analytic method to obtain the optimal solution. In Part 1, we propose an algorithm specifically designed for this problem. The underlying structure of the algorithm is the connection between three optimal states through the optimal feasible strategy. We propose an algebraic method to calculate the optimal feasible strategy and discuss how it intersects with the speed limit. In Part 2, we will discuss the optimality and uniqueness of the optimal feasible strategy. Case studies using data from a real freight railway line are given to demonstrate the effectiveness of the proposed algorithm.</div></div>\",\"PeriodicalId\":48871,\"journal\":{\"name\":\"Transportmetrica A-Transport Science\",\"volume\":\"21 2\",\"pages\":\"Pages 1-29\"},\"PeriodicalIF\":3.6000,\"publicationDate\":\"2025-05-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Transportmetrica A-Transport Science\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/org/science/article/pii/S2324993523003159\",\"RegionNum\":2,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"TRANSPORTATION\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Transportmetrica A-Transport Science","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/org/science/article/pii/S2324993523003159","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"TRANSPORTATION","Score":null,"Total":0}
引用次数: 0

摘要

当列车在多列车系统中运行时,其他列车的功率流和轨道等级构成了列车的时空区域(STA)。寻找列车节能控制问题的最优解有助于降低净能耗。本文研究了求最优解的解析方法。在第1部分中,我们提出了一个专门针对这个问题设计的算法。该算法的底层结构是通过最优可行策略将三种最优状态连接起来。我们提出了一种计算最优可行策略的代数方法,并讨论了最优可行策略如何与限速相交。在第二部分中,我们将讨论最优可行策略的最优性和唯一性。最后以实际货运铁路的数据为例,验证了该算法的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
The optimal solution to the energy-efficient train control in a multi-trains system-part 1: the algorithm design
When a train travels in a multi-trains system, the power flow of other trains and the track grades make up the spatial–temporal area (STA) for the train. Finding the optimal solution for the energy-efficient train control problem in STA can help reduce the net energy consumption. This paper studies the analytic method to obtain the optimal solution. In Part 1, we propose an algorithm specifically designed for this problem. The underlying structure of the algorithm is the connection between three optimal states through the optimal feasible strategy. We propose an algebraic method to calculate the optimal feasible strategy and discuss how it intersects with the speed limit. In Part 2, we will discuss the optimality and uniqueness of the optimal feasible strategy. Case studies using data from a real freight railway line are given to demonstrate the effectiveness of the proposed algorithm.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Transportmetrica A-Transport Science
Transportmetrica A-Transport Science TRANSPORTATION SCIENCE & TECHNOLOGY-
CiteScore
8.10
自引率
12.10%
发文量
55
期刊介绍: Transportmetrica A provides a forum for original discourse in transport science. The international journal''s focus is on the scientific approach to transport research methodology and empirical analysis of moving people and goods. Papers related to all aspects of transportation are welcome. A rigorous peer review that involves editor screening and anonymous refereeing for submitted articles facilitates quality output.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信