伽罗瓦CM域上模椭圆曲线比例的下界

IF 0.5 3区 数学 Q3 MATHEMATICS
Zachary Feng
{"title":"伽罗瓦CM域上模椭圆曲线比例的下界","authors":"Zachary Feng","doi":"10.1142/s1793042124500246","DOIUrl":null,"url":null,"abstract":"We calculate an explicit lower bound on the proportion of elliptic curves that are modular over any Galois CM field not containing [Formula: see text]. Applied to imaginary quadratic fields, this proportion is at least [Formula: see text]. Applied to cyclotomic fields [Formula: see text] with [Formula: see text], this proportion is at least [Formula: see text] with only finitely many exceptions of [Formula: see text], for any choice of [Formula: see text].","PeriodicalId":14293,"journal":{"name":"International Journal of Number Theory","volume":null,"pages":null},"PeriodicalIF":0.5000,"publicationDate":"2023-11-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"A Lower Bound on the Proportion of Modular Elliptic Curves Over Galois CM Fields\",\"authors\":\"Zachary Feng\",\"doi\":\"10.1142/s1793042124500246\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We calculate an explicit lower bound on the proportion of elliptic curves that are modular over any Galois CM field not containing [Formula: see text]. Applied to imaginary quadratic fields, this proportion is at least [Formula: see text]. Applied to cyclotomic fields [Formula: see text] with [Formula: see text], this proportion is at least [Formula: see text] with only finitely many exceptions of [Formula: see text], for any choice of [Formula: see text].\",\"PeriodicalId\":14293,\"journal\":{\"name\":\"International Journal of Number Theory\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.5000,\"publicationDate\":\"2023-11-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Number Theory\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1142/s1793042124500246\",\"RegionNum\":3,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Number Theory","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1142/s1793042124500246","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 1

摘要

我们计算了在任何伽罗瓦CM域上模化的椭圆曲线比例的显式下界,不包含[公式:见文本]。应用于虚二次域,这个比例至少为[公式:见文本]。将[公式:见文]与[公式:见文]应用于切眼圈领域,这个比例至少为[公式:见文],只有[公式:见文]有有限的例外,任何[公式:见文]的选择。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A Lower Bound on the Proportion of Modular Elliptic Curves Over Galois CM Fields
We calculate an explicit lower bound on the proportion of elliptic curves that are modular over any Galois CM field not containing [Formula: see text]. Applied to imaginary quadratic fields, this proportion is at least [Formula: see text]. Applied to cyclotomic fields [Formula: see text] with [Formula: see text], this proportion is at least [Formula: see text] with only finitely many exceptions of [Formula: see text], for any choice of [Formula: see text].
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
1.10
自引率
14.30%
发文量
97
审稿时长
4-8 weeks
期刊介绍: This journal publishes original research papers and review articles on all areas of Number Theory, including elementary number theory, analytic number theory, algebraic number theory, arithmetic algebraic geometry, geometry of numbers, diophantine equations, diophantine approximation, transcendental number theory, probabilistic number theory, modular forms, multiplicative number theory, additive number theory, partitions, and computational number theory.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信